Project description:Oral delivery remains a challenge for poorly permeable hydrophilic macromolecules. Poly(amido amine) (PAMAM) dendrimers have shown potential for their possible oral delivery. Transepithelial transport of carboxyl-terminated G3.5 and amine-terminated G4 PAMAM dendrimers was assessed using isolated rat jejunal mucosae mounted in Ussing chambers. The 1 mM FITC-labeled dendrimers were added to the apical side of mucosae. Apparent permeability coefficients (Papp) from the apical to the basolateral side were significantly increased for FITC when conjugated to G3.5 PAMAM dendrimer compared to FITC alone. Minimal signs of toxicity were observed when mucosae were exposed to both dendrimers with respect to transepithelial electrical resistance changes, carbachol-induced short circuit current stimulation, and histological changes. [(14)C]-mannitol fluxes were not altered in the presence of 1 mM dendrimers, suggesting that the paracellular pathway was not affected at this concentration in this model. These results give insight into the mechanism of PAMAM dendrimer transepithelial rat jejunal transport, as well as toxicological considerations important for oral drug delivery.
Project description:BackgroundThe relationship between intestinal epithelial integrity and the development of intestinal disease is of increasing interest. A reduction in mucosal integrity has been associated with ulcerative colitis, Crohn's disease and potentially could have links with colorectal cancer development. The Ussing chamber system can be utilised as a valuable tool for measuring gut integrity. Here we describe step-by-step methodology required to measure intestinal permeability of both mouse and human colonic tissue samples ex vivo, using the latest equipment and software. This system can be modified to accommodate other tissues.MethodsAn Ussing chamber was constructed and adapted to support both mouse and human tissue to measure intestinal permeability, using paracellular flux and electrical measurements. Two mouse models of intestinal inflammation (dextran sodium sulphate treatment and T regulatory cell depletion using C57BL/6-FoxP3DTR mice) were used to validate the system along with human colonic biopsy samples.ResultsDistinct regional differences in permeability were consistently identified within mouse and healthy human colon. In particular, mice showed increased permeability in the mid colonic region. In humans the left colon is more permeable than the right. Furthermore, inflammatory conditions induced chemically or due to autoimmunity reduced intestinal integrity, validating the use of the system.ConclusionsThe Ussing chamber has been used for many years to measure barrier function. However, a clear and informative methods paper describing the setup of modern equipment and step-by-step procedure to measure mouse and human intestinal permeability isn't available. The Ussing chamber system methodology we describe provides such detail to guide investigation of gut integrity.
Project description:This study predicted flux differences between brown and white adipocytes by integrating the results of extracellular flux analyzers, such as the Seahorse Analyzer, with metabolic modeling. The microarrays of the individuals' preadipocytes were used to support the predictions. These are the same individuals who were assayed by microarray in GSE68544.
Project description:Tree stem CO2 efflux is an important component of ecosystem carbon fluxes and has been the focus of many studies. While CO2 efflux can easily be measured, a growing number of studies have shown that it is not identical with actual in situ respiration. Complementing measurements of CO2 flux with simultaneous measurements of O2 flux provides an additional proxy for respiration, and the combination of both fluxes can potentially help getting closer to actual measures of respiratory fluxes. To date, however, the technical challenge to measure relatively small changes in O2 concentration against its high atmospheric background has prevented routine O2 measurements in field applications. Here, we present a new and low-cost field-tested device for autonomous real-time and quasi-continuous long-term measurements of stem respiration by combining CO2 (NDIR-based) and O2 (quenching-based) sensors in a tree stem chamber. Our device operates as a cyclic-closed system and measures changes in both CO2 and O2 concentration within the chamber over time. The device is battery powered with a >1-week power independence, and data acquisition is conveniently achieved by an internal logger. Results from both field and laboratory tests document that our sensors provide reproducible measurements of CO2 and O2 exchange fluxes under varying environmental conditions.
Project description:White adipocytes are specialized for energy storage, whereas brown adipocytes are specialized for energy expenditure. Explicating this difference can help identify therapeutic targets for obesity. A common tool to assess metabolic differences between such cells is the Seahorse Extracellular Flux (XF) Analyzer, which measures oxygen consumption and media acidification in the presence of different substrates and perturbagens. Here, we integrate the Analyzer's metabolic profile from human white and brown adipocytes with a genome-scale metabolic model to predict flux differences across the metabolic map. Predictions matched experimental data for the metabolite 4-aminobutyrate, the protein ABAT, and the fluxes for glucose, glutamine, and palmitate. We also uncovered a difference in how adipocytes dispose of nitrogenous waste, with brown adipocytes secreting less ammonia and more urea than white adipocytes. Thus, the method and software we developed allow for broader metabolic phenotyping and provide a distinct approach to uncovering metabolic differences.
Project description:In C. elegans, rhythmic defecation is timed by oscillatory Ca(2+) signaling in the intestine [1-5]. Here, by using fluorescent biosensors in live, unrestrained worms, we show that intestinal pH also oscillates during defecation and that transepithelial proton movement is essential for defecation signaling. The intestinal cytoplasm is acidified by proton influx from the lumen during defecation. Acidification is predicted to trigger Na(+)/H(+) exchange activity and subsequent proton efflux. The Na(+)/H(+) exchanger NHX-7 (PBO-4) extrudes protons across the basolateral membrane and is necessary for both acute acidification of the pseudocoelom and for strong contractions of the posterior body wall muscles during defecation. This suggests that secreted protons transmit a signal between the intestine and muscle. NHX-2 is a second Na(+)/H(+) exchanger whose distribution is limited to the apical membranes facing the intestinal lumen. RNA interference of nhx-2 reduces the basal pH of the intestinal cells, reduces the rate of proton movement between the lumen and the cytoplasm during defecation, and extends the defecation period. Thus, the cell may integrate both pH and calcium signals to regulate defecation timing. Overall, these results establish the defecation cycle as a model system for studying transepithelial proton flux in tissues that maintain systemic acid-base balance.
Project description:Although inhaled bronchodilators are commonly used in the treatment of airway disease to dilate airway smooth muscle, little is known regarding the mechanisms that regulate albuterol movement across the epithelium to reach its target, the airway smooth muscle. Because the rate of onset depends on the transepithelial transport of albuterol, to determine the mechanisms that regulate the transepithelial movement of albuterol is essential. Human bronchial epithelial cells, fully redifferentiated in culture at the air-liquid interface, were used to study the cellular uptake and total transepithelial flux of (3)H-albuterol from the apical to the basolateral surfaces. (3)H-mannitol and transepithelial electrical resistance were used to quantify changes in paracellular permeability. The majority of albuterol flux across the epithelium occurred via the paracellular route. The cellular uptake of albuterol was found to be saturable, whereas transepithelial flux was not. Cellular uptake could be inhibited by the amino acids lysine and histidine, with no effect on net transepithelial flux. Transepithelial flux was altered by maneuvers that collapsed or disrupted intercellular junctions. Acidification, usually seen in exacerbations of airway disease, decreased albuterol flux. In addition, albuterol increased its own paracellular permeability. The ability of albuterol to modulate paracellular permeability was blocked by the β(2)-adrenergic receptor-selective antagonist ICI 118551. Albuterol mainly crosses the epithelium via the paracellular pathway, but has the ability to modulate its own permeability through changes in the leakiness of tight junctions, which is modulated through the signaling of the β(2)-adrenergic receptor.
Project description:The large intestine (cecum and colon) is a complex biochemical factory of vital importance to human health. It plays a major role in digestion and absorption by salvaging nutrients from polysaccharides via fermentation initiated by the bacteria that comprise the gut microbiome. We hypothesize that the intestinal epithelium absorbs a limited number of luminal metabolites with bioactive potential while actively excluding those with toxic effects. To explore this concept, we combined 1H NMR detection with Ussing chamber measurements of absorptive transport by rat cecum. Numerous metabolites transported across the epithelium can be measured simultaneously by 1H NMR, a universal detector of organic compounds, alleviating the need for fluorescent or radiolabeled compounds. Our results demonstrate the utility of this approach to delineate the repertoire of fecal solutes that are selectively absorbed by the cecum and to determine their transport rates.
Project description:Labrasol, as a non-ionic surfactant, can enhance the permeation and absorption of drugs, and is extensively used in topical, transdermal, and oral pharmaceutical preparations as an emulsifier and absorption enhancer. Recent studies in our laboratory have indicated that labrasol has a strong absorption enhancing effect on different types of drugs in vitro and in vivo. This study was performed to further elucidate the action mechanism of labrasol on the corneal penetration. In this research, the fluorescein sodium, a marker of passive paracellular transport of tight junction, was selected as the model drug to assess the effect of labrasol on in vitro corneal permeability. To investigate the continuous and real-time influence of labrasol on the membrane permeability and integrity, the Ussing chamber system was applied to monitor the electrophysiological parameters. And, furthermore, we elucidated the effect of labrasol on excised cornea at the molecular level by application of RT-PCR, Western blot, and immunohistochemical staining. The results indicated that labrasol obviously enhance the transcorneal permeability of fluorescein sodium, and the enhancement was realized by interacting with and down-regulating the associated proteins, such as F-actin, claudin-1 and ?-catenin, which were contributed to cell-cell connections, respectively.
Project description:BackgroundObtaining instantaneous gas exchanges data is fundamental to gain information on photosynthesis. Leaf level data are reliable, but their scaling up to canopy scale is difficult as they are acquired in standard and/or controlled conditions, while natural environments are extremely dynamic. Responses to dynamic environmental conditions need to be considered, as measurements at steady state and their related models may overestimate total carbon (C) plant uptake.ResultsIn this paper, we describe an automatic, low-cost measuring system composed of 12 open chambers (60 × 60 × 150 cm; around 400 euros per chamber) able to measure instantaneous CO2 and H2O gas exchanges, as well as environmental parameters, at canopy level. We tested the system's performance by simulating different CO2 uptake and respiration levels using a tube filled with soda lime or pure CO2, respectively, and quantified its response time and measurement accuracy. We have been also able to evaluate the delayed response due to the dimension of the chambers, proposing a method to correct the data by taking into account the response time ([Formula: see text]) and the residence time (τ). Finally, we tested the system by growing a commercial soybean variety in fluctuating and non-fluctuating light, showing the system to be fast enough to capture fast dynamic conditions. At the end of the experiment, we compared cumulative fluxes with total plant dry biomass.ConclusionsThe system slightly over-estimated (+ 7.6%) the total C uptake, even though not significantly, confirming its ability in measuring the overall CO2 fluxes at canopy scale. Furthermore, the system resulted to be accurate and stable, allowing to estimate the response time and to determine steady state fluxes from unsteady state measured values. Thanks to the flexibility in the software and to the dimensions of the chambers, even if only tested in dynamic light conditions, the system is thought to be used for several applications and with different plant canopies by mimicking different environmental conditions.