Project description:Diabetes mellitus is a major health problem with increasing prevalence at a global level. The discovery of insulin in the early 1900s represented a major breakthrough in diabetes management, with further milestones being subsequently achieved with the identification of glucagon-like peptide-1 (GLP-1) and the introduction of GLP-1 receptor agonists (GLP-1 RAs) in clinical practice. Moreover, the subcutaneous delivery of biotherapeutics is a well-established route of administration generally preferred over the intravenous route due to better patient compliance and prolonged drug absorption. However, current subcutaneous formulations of GLP-1 RAs present pharmacokinetic problems that lead to adverse reactions and treatment discontinuation. In this review, we discuss the current challenges of subcutaneous administration of peptide-based therapeutics and provide an overview of the formulations available for the different routes of administration with improved bioavailability and reduced frequency of administration.
Project description:RAF kinase is crucially involved in cell proliferation and survival in colorectal cancer (CRC). Patients with metastatic CRC (mCRC) harboring BRAF mutations (BRAFms) not only experience a poor prognosis but also benefit less from therapeutics targeting ERK signaling. With advances in RAF inhibitors and second-generation inhibitors including encorafenib and vemurafenib, which have been approved for treating BRAF-V600E malignancies, the combinatorial therapeutic strategies of RAF inhibitors elicit remarkable responses in patients with BRAF-V600E mCRC. However, the therapeutic efficacy is restricted by resistance, which might be due to RAF dimerization and reactivation of the MAPK pathway. In addition, the next-generation RAF inhibitors, which are characterized by varying structural and biochemical properties, have achieved preclinical and clinical advances. Herein, we summarize the existing mechanism of RAF kinases in CRC, including MAPK feedback reactivation of resistance to RAF inhibitors. We additionally summarize the development of three generations of RAF inhibitors and different therapeutic strategies including the combination of EGFR, BRAF, and PI3K inhibitors for BRAFm CRC treatment.
Project description:Paclitaxel exhibits clinical activity against a wide variety of solid tumors. However, resistance to paclitaxel significantly attenuates the response to chemotherapy. The ABC transporter subfamily C member 10 (ABCC10), also known as multi-drug resistance protein 7 (MRP7) efflux transporter, is a major mediator of paclitaxel resistance. Here, we determine the effect of NVP-BHG712, a specific EphB4 receptor inhibitor, on 1) paclitaxel resistance in HEK293 cells transfected with ABCC10, 2) the growth of tumors in athymic nude mice that received NVP-BHG712 and paclitaxel systemically and 3) the pharmacokinetics of paclitaxel in presence or absence of NVP-BHG712. NVP-BHG712 (0.5 μM), in HEK293/ABCC10 cells, significantly enhanced the intracellular accumulation of paclitaxel by inhibiting the efflux activity of ABCC10 without altering the expression level of the ABCC10 protein. Furthermore, NVP-BHG712 (25 mg/kg, p.o., q3d x 6), in combination with paclitaxel (15 mg/kg, i.p., q3d x 6), significantly inhibited the growth of ABCC10-expressing tumors in athymic nude mice. NVP-BHG712 administration significantly increased the levels of paclitaxel in the tumors but not in plasma compared to paclitaxel alone. The combination of NVP-BHG712 and paclitaxel could serve as a novel and useful therapeutic strategy to attenuate paclitaxel resistance mediated by the expression of the ABCC10 transporter.
Project description:Apoptosis is a tightly regulated cellular process and faulty regulation of apoptosis is a hallmark of human cancers. Targeting key apoptosis regulators with the goal to restore apoptosis in tumor cells has been pursued as a new cancer therapeutic strategy. XIAP, cIAP1, and cIAP2, members of inhibitor of apoptosis (IAP) proteins, are critical regulators of cell death and survival and are attractive targets for new cancer therapy. The SMAC/DIABLO protein is an endogenous antagonist of XIAP, cIAP1, and cIAP2. In the last decade, intense research efforts have resulted in the design and development of several small-molecule SMAC mimetics now in clinical trials for cancer treatment. In this review, we will discuss the roles of XIAP, cIAP1, and cIAP2 in regulation of cell death and survival, and the design and development of small-molecule SMAC mimetics as novel cancer treatments.
Project description:Purpose of reviewThe current review focuses on recent insights into the development of small molecule therapeutics to treat the β-globinopathies.Recent findingsRecent studies of fetal γ-globin gene regulation reveal multiple insights into how γ-globin gene reactivation may lead to novel treatment for β-globinopathies.SummaryWe summarize current information regarding the binding of transcription factors that appear to be impeded or augmented by different hereditary persistence of fetal hemoglobin (HPFH) mutations. As transcription factors have historically proven to be difficult to target for therapeutic purposes, we next address the contributions of protein complexes associated with these HPFH mutation-affected transcription factors with the aim of defining proteins that might provide additional targets for chemical molecules to inactivate the corepressors. Among the enzymes associated with the transcription factor complexes, a group of corepressors with currently available inhibitors were initially thought to be good candidates for potential therapeutic purposes. We discuss possibilities for pharmacological inhibition of these corepressor enzymes that might significantly reactivate fetal γ-globin gene expression. Finally, we summarize the current clinical trial data regarding the inhibition of select corepressor proteins for the treatment of sickle cell disease and β-thalassemia.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a global health pandemic. The lack of effective treatments, coupled with its etiology, has resulted in more than 400,000 deaths at the time of writing. The SARS-CoV-2 genome is highly homologous to that of SARS-CoV, the causative agent behind the 2003 SARS outbreak. Based on prior reports, clinicians have pursued the off-label use of several antiviral drugs, while the scientific community has responded by seeking agents against traditional targets, especially viral proteases. However, several avenues remain unexplored, including disrupting E and M protein oligomerization, outcompeting host glycan-virus interactions, interfering with the heparan sulfate proteoglycans-virus interaction, and others. In this review, we highlight some of these opportunities while summarizing the drugs currently in use against coronavirus 2019 (COVID-19).
Project description:Protein drugs hold great promise as therapeutics for a wide range of diseases. Unfortunately, one of the greatest challenges to be addressed during clinical development of protein therapeutics is their short circulation half-life. Several protein conjugation strategies have been developed for half-life extension. However, these strategies have limitations and there remains room for improvement. Here, we report a novel nature-inspired strategy for enhancing the in vivo half-life of proteins. Our strategy involves conjugating proteins to a hydrophilic small molecule that binds reversibly to the plasma protein, transthyretin. We show here that our strategy is effective in enhancing the pharmacokinetic and pharmacodynamic properties of human interleukin 2 in rats, potentially opening the door for more effective and safer cancer immunotherapies. To our knowledge, this is the first example of successful use of a small-molecule that not only extends the half-life but also maintains the smaller size, binding potency, and hydrophilicity of proteins.
Project description:The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Project description:Glioblastoma (GBM), the most aggressive astrocytic glioma, remains a therapeutic challenge despite multimodal approaches. Immunotherapy holds promise, but its efficacy is hindered by the highly immunosuppressive GBM microenvironment. This review underscores the urgent need to comprehend the intricate interactions between glioma and immune cells, shaping the immunosuppressive tumor microenvironment (TME) in GBM. Immunotherapeutic advancements have shown limited success, prompting exploration of immunomodulatory approaches targeting tumor-associated macrophages (TAMs) and microglia, constituting a substantial portion of the GBM TME. Converting protumor M2-like TAMs to antitumor M1-like phenotypes emerges as a potential therapeutic strategy for GBM. The blood-brain barrier (BBB) poses an additional challenge to successful immunotherapy, restricting drug delivery to GBM TME. Research efforts to enhance BBB permeability have mainly focused on small molecules, which can traverse the BBB more effectively than biologics. Despite over 200 clinical trials for GBM, studies on small molecule immunomodulators within the GBM TME are scarce. Developing small molecules with optimal brain penetration and selectivity against immunomodulatory pathways presents a promising avenue for combination therapies in GBM. This comprehensive review discusses various immunomodulatory pathways in GBM progression with a focus on immune checkpoints and TAM-related targets. The exploration of such molecules, with the capacity to selectively target key immunomodulatory pathways and penetrate the BBB, holds the key to unlocking new combination therapy approaches for GBM.
Project description:Background: Diosgenin, charantin, and hydroxychalcone are utilized for standardization of popular antidiabetic herbal drugs Trigonella foenum-graecum L. belonging to family Fabaceae, Momordica charantia L. belonging to family Cucurbitaceae, and Cinnamomum verum J. Presl belonging to family Lauraceae. However, no reports on the bioavailability of these markers were available. The present study was undertaken to determine the bioavailability and pharmacokinetic profile of the markers and formulations containing the herbs. Methods: The pharmacokinetic profile and absolute bioavailability of the pure active markers were determined in male Wistar rats by administrating individually the doses of 1.5 mg/kg i.v. and 15 mg/kg p.o., followed by estimation of serum levels of the markers at 0, 10, 30, 60, 120, and 240 mins till 24 h time points by a validated bioanalytical HPTLC method. Two standardized antidiabetic capsule formulations containing spray dried hydroalcoholic extracts of seeds of Trigonella foenum-graecum L. (42.8 mg equivalent to 0.95%w/w of diosgenin), fresh fruits of Momordica charantia L. (21.4 mg equivalent to 0.4% w/w of charantin), and bark of Cinnamomum verum J. Presl (10.71 mg equivalent to 0.079 %w/w hydroxychalcone) were prepared. In one formulation, piperine 1.5 mg was added along with the other herbal extracts mentioned. Bioavailability and pharmacokinetic profile of these two formulations were determined in male Wistar rats through estimating serum levels of active markers diosgenin, charantin, and hydroxychalcone at 0, 10, 30, 60, 120, and 240 mins till 24 h later oral administration of the formulations (Formulation without piperine F1 and formulation with Piperine F2). Results: Plasma concentrations were found to decline mono-exponentially following intravenous administration, and the mean elimination half-life (t1/2) was observed to be 7.93, 8.21, and 4.66 h, respectively. The absolute oral bioavailability of pure markers was observed to be 9.0 ± 0.2%, 8.18 ± 0.36%, and 10.54 ± 0.52% by the dose normalization method. The oral bioavailabilities of the formulations with respect to diosgenin, charantin, and hydroxychalcone were found to be 9.78, 10.743, and 8.07%, respectively. The formulation containing piperine indicated a significant (p < 0.01) increase in the bioavailabilities of all the marker compounds. Conclusion: In conclusion, diosgenin and charantin have low bioavailabilities as compared to hydroxychalcone. The bioavailabilities of all the three marker compounds can be increased exponentially with the addition of piperine.