Project description:A series of 18 regio- and stereo-chemically diverse chiral non-racemic 1,2-, 1,3-, and 1,4-diamines have been synthesized from commercial (1S)-(+)-ketopinic acid and (1S)-(+)-10-camphorsulfonic acid. The structures of the diamines are all based on the d-(+)-camphor scaffold and feature isomeric diversity in terms of regioisomeric attachment of the primary and the tertiary amine function and the exo/endo-isomerism. Diamines were transformed into the corresponding noncovalent bifunctional thiourea organocatalysts, which have been evaluated for catalytic activity in the conjugative addition of 1,3-dicarbonyl nucleophiles (dimethyl malonate, acetylacetone, and dibenzoylmethane) to trans-β-nitrostyrene. The highest enantioselectivity was achieved in the reaction with acetylacetone as nucleophile using endo-1,3-diamine derived catalyst 52 (91.5:8.5 er). All new organocatalysts 48-63 have been fully characterized. The structures and the absolute configurations of eight intermediates and thiourea derivative 52 were also determined by X-ray diffraction.
Project description:The synthesis of bifunctional N-sulfinylureas and thioureas with an appended pyrrolidine unit is presented. These organocatalysts were evaluated in Michael additions of aldehydes to nitroalkenes both under solvent-free conditions and in solution. The N-sulfinylurea catalyst was more efficient than the corresponding thiourea. For some substrates, enantioselectivities reached 98% ee. The stereogenic center on the sulfur did not have a considerable influence on the catalytic reactions. Under ball-milling conditions, the Michael adducts were obtained in good yields but with slightly lower enantiomeric purities than in solution. DFT calculations elucidated its mode of action and confirmed a dual activation mode, which combines enamine activation of aldehydes and hydrogen-bond activation of nitroalkenes.
Project description:Ten novel bifunctional quaternary ammonium salt phase-transfer organocatalysts were synthesized in four steps from (+)-camphor-derived 1,3-diamines. These quaternary ammonium salts contained either (thio)urea or squaramide hydrogen bond donor groups in combination with either trifluoroacetate or iodide as the counteranion. Their organocatalytic activity was evaluated in electrophilic heterofunctionalizations of β-keto esters and in the Michael addition of a glycine Schiff base with methyl acrylate. α-Fluorination and chlorination of β-keto esters proceeded with full conversion and low enantioselectivities (up to 29% ee). Similarly, the Michael addition of a glycine Schiff base with methyl acrylate proceeded with full conversion and up to 11% ee. The new catalysts have been fully characterized; the stereochemistry at the C-2 chiral center was unambiguously determined.
Project description:Catalytic glycosylation is a vital transformation in synthetic carbohydrate chemistry due to its ability to expediate the large-scale oligosaccharide synthesis for glycobiology studies with the consumption of minimal amounts of promoters. Herein we introduce a facile and efficient catalytic glycosylation employing glycosyl ortho-2,2-dimethoxycarbonylcyclopropylbenzoates (CCBz) promoted by a readily accessible and non-toxic Sc(III) catalyst system. The glycosylation reaction involves a novel activation mode of glycosyl esters driven by the ring-strain release of an intramolecularly incorporated donor-acceptor cyclopropane (DAC). The versatile glycosyl CCBz donor enables highly efficient construction of O-, S-, and N-glycosidic bonds under mild conditions, as exemplified by the convenient preparation of the synthetically challenging chitooligosaccharide derivatives. Of note, a gram-scale synthesis of tetrasaccharide corresponding to Lipid IV with modifiable handles is achieved using the catalytic strain-release glycosylation. These attractive features promise this donor to be the prototype for developing next generation of catalytic glycosylation.
Project description:The synthesis and the evaluation as organocatalysts of new chiral guanidines derived from benzimidazoles in the enantioselective α-amination of 1,3-dicarbonyl compounds using di-t-butylazodicarboxylate as aminating agent is herein disclosed. The catalysts are readily synthesized through the reaction of 2-chlorobezimidazole and a chiral amine in moderate-to-good yields. Among all of them, those derived from (R)-1-phenylethan-1-amine (1) and (S)-1-(2-naphthyl)ethan-1-amine (3) turned out to be the most efficient for such asymmetric transformation, rendering good-to-high yields and moderate-to-good enantioselectivities for the amination products.
Project description:A method for catalytic asymmetric gamma sulfenylation of carbonyl compounds has been developed. In the presence of an appropriate catalyst, thiols not only add to the gamma position of allenoates, overcoming their propensity to add to the beta position in the absence of a catalyst, but do so with very good enantioselectivity. Sulfur nucleophiles are now added to the three families of nucleophiles (carbon, nitrogen, and oxygen) that had earlier been shown to participate in catalyzed gamma additions. The phosphine catalyst of choice, TangPhos, had previously only been employed as a chiral ligand for transition metals, not as an efficient enantioselective nucleophilic catalyst.
Project description:Bifunctional organocatalysts bearing amino and urea functional groups in a chiral molecular skeleton were applied to the enantioselective synthesis of axially chiral benzamides via aromatic electrophilic bromination. The results demonstrate the versatility of bifunctional organocatalysts for the enantioselective construction of axially chiral compounds. Moderate to good enantioselectivities were afforded with a range of benzamide substrates. Mechanistic investigations were also carried out.
Project description:In this study, a series of sixteen (16) d-fructose-based bifunctional thioureas were examined as organocatalysts for the enantioselective Friedel-Crafts alkylation of indoles and pyrrole with β-nitrostyrenes. This investigation is a part of our ongoing project, which aims to expand the scope of application of d-fructose-based thioureas. Under the optimized low-temperature reaction conditions, the corresponding adducts were obtained with good yield (up to 95%) and excellent enantioselectivity (>99% ee).
Project description:For the first time, chiral sulfoximine derivatives have been applied as asymmetric organocatalysts. In combination with a thiourea-type backbone the sulfonimidoyl moiety leads to organocatalysts showing good reactivity in the catalytic desymmetrization of a cyclic meso-anhydride and moderate enantioselectivity in the catalytic asymmetric Biginelli reaction. Straightforward synthetic routes provide the newly designed thiourea-sulfoximine catalysts in high overall yields without affecting the stereohomogeneity of the sulfur-containing core fragment.
Project description:Thiouracil catalyzes stereoselective glycosylations with galactals in loadings as low as 0.1 mol%. It is proposed that in these glycosylations thiouracil, monothiophthalimide, and the previously reported catalyst, Schreiner's thiourea, do not operate via a double H-bonding mechanism but rather by Brønsted acid/base catalysis. In addition to the synthesis of 2-deoxyglycosides and glycoconjugates, we report the first organocatalytic synthesis of 1,1'-linked trehalose-type sugars.