Project description:Superhydrophobic surfaces are usually assumed to be rigid so that liquids do not deform them. Here we analyze how the relation between microstructure and wetting changes when the surface is flexible. Therefore we deposited liquid drops on arrays of flexible micropillars. We imaged the drop's surface and the bending of micropillars with confocal microscopy and analyzed the deflection of micropillars while the contact line advanced and receded. The deflection is directly proportional to the horizontal component of the capillary force acting on that particular micropillar. In the Cassie or "fakir" state, drops advance by touching down on the next top faces of micropillars, much like on rigid arrays. In contrast, on the receding side the micropillars deform. The main force hindering the slide of a drop is due to pinning at the receding side, while the force on the advancing side is negligible. In the Wenzel state, micropillars were deflected in both receding and advancing states.
Project description:Coarse-grained models of DNA have made important contributions to the determination of the physical properties of genomic DNA, working as a molecular machine for gene regulation. In this study, to analyze the global dynamics of long DNA sequences with consideration of sequence-dependent geometry, we propose elastic network models of DNA where each particle represents k nucleotides (1-particle-per-k-nucleotides, 1PkN). The models were adjusted according to profiles of the anisotropic fluctuations obtained from our previous 1-particle-per-1-nucleotide (1P1N) model, which was proven to reproduce such profiles of all-atom models. We confirmed that the 1P3N and 1P4N models are suitable for the analysis of detailed dynamics such as local twisting motion. The models are intended for the analysis of large structures, e.g., 10-nm fibers in the nucleus, and nucleoids of mitochondrial or phage DNA at low computational costs. As an example, we surveyed the physical characteristics of the whole mitochondrial human and Plasmodium falciparum genomes.
Project description:Herein we demonstrate the fabrication of arrays of micropillars, achieved through the combination of direct laser writing and nanoimprint lithography. By combining two diacrylate monomers, polycaprolactone dimethacrylate (PCLDMA) and 1,6-hexanediol diacrylate (HDDA), two copolymer formulations that, owing to the varying ratios of the hydrolysable ester functionalities present in the polycaprolactone moiety, can be degraded in the presence of base in a controllable manner. As such, the degradation of the micropillars can be tuned over several days as a function of PCLDMA concentration within the copolymer formulations, and the topography greatly varied over a short space of time, as visualised using scanning electron microscopy and atomic force microscopy. Crosslinked neat HDDA was used as a control material, demonstrating that the presence of the PCL was responsible for the ability of the microstructures to degrade in the controlled manner. In addition, the mass loss of the crosslinked materials was minimal, demonstrating the degradation of microstructured surfaces without loss of bulk properties was possible. Moreover, the compatibility of these crosslinked materials with mammalian cells was explored. The influence of both indirect and direct contact of the materials with A549 cells was assessed by profiling indices reflective of cytotoxicity such as morphology, adhesion, metabolic activity, oxidative balance, and release of injury markers. No significant changes in the aforementioned profile were observed in the cells cultured under these conditions for up to 72 h, with the cell-material interaction suggesting these materials may have potential in microfabrication contexts towards biomedical application purposes.
Project description:Polydimethylsiloxane (PDMS) micropillar arrays are widely used in research labs and engineering fields as analytical tools for various purposes. When the micropillar length or density surpasses a critical value, micropillars tend to collapse with each other and become unusable. Restoring collapsed PDMS micropillars typically involves the use of low surface tension solvents and ultrasound sonication, but such approach has received little success to date. In this work, we examined the effectiveness of different types of solvents for restoring collapsed PDMS micropillar arrays and show that the swelling ratio of PDMS in selected solvents constitutes an important factor in the effectiveness of restoring collapsed PDMS micropillars. Our results could be a promoter in recycling PDMS micropillar arrays and achieving economic and social benefits.
Project description:Multielectrode arrays (MEAs) are essential tools in neural and cardiac research as they provide a means for noninvasive, multiplexed recording of extracellular field potentials with high temporal resolution. To date, the mechanical properties of the electrode material, e.g., its Young's modulus, have not been taken into consideration in most MEA designs leaving hard materials as the default choice due to their established fabrication processes. However, the cell-electrode interface is known to significantly affect some aspects of the cell's behavior. In this paper, we describe the fabrication of a soft 3D micropillar electrode array. Using this array, we proceed to successfully record action potentials from monolayer cell cultures. Specifically, our conductive hydrogel micropillar electrode showed improved signal amplitude and signal-to-noise ratio, compared with conventional hard iridium oxide micropillar electrodes of the same diameter. Taken together, our fabricated soft micropillar electrode array will provide a tissue-like Young's modulus and thus a relevant mechanical microenvironment to fundamental cardiac and neural studies.
Project description:When a liquid drop gets into contact with a soft array of microstructures, capillary forces at the three-phase contact line can lead to critical deformations. Microstructures may collapse and form bundles or even patterns. So far, viewing the kinetics of bundling at the menisci scale has remained elusive. Here, we use laser scanning confocal microscopy to directly image the menisci between micropillars. We image structural changes in polydimethylsiloxane micropillar arrays during the Cassie-to-Wenzel transitions of a water drop evaporating on top of the array. We demonstrate how the regular pillar array undergoes a spontaneous symmetry breaking as the first step to the formation of pillar bundles. A comparison of the Cassie-to-Wenzel transition in air and FC40 indicates that the local contact angle determines the outcome of the bundling process. Based on these observations, we develop a simple model using the local contact angle, stiffness of the pillars, and interfacial tension of the liquid to predict the onset of the symmetry breaking.
Project description:PurposeThis paper investigates the accuracy of blood flow velocities simulated from a geometry prescribed computational fluid dynamics (CFD) pipeline by applying it to a dynamic heart phantom. The CFD flow patterns are compared to a direct flow measurement by ultrasound vector flow imaging (VFI). The hypothesis is that the simulated velocity magnitudes are within one standard deviation of the measured velocities.MethodsThe CFD pipeline uses computed tomography angiography (CTA) images with 20 volumes per cardiac cycle as geometry input. Fluid domain movement is prescribed from volumetric image registration using the CTA image data. Inlet and outlet conditions are defined by the experimental setup. VFI is systematically measured in parallel planes, and compared to the corresponding planes in the simulated time dependent three dimensional fluid velocity field.ResultsThe measured VFI and simulated CFD have similar flow patterns when compared qualitatively. A quantitative comparison of the velocity magnitude is also performed at specific regions of interest. These are evaluated at 11 non-overlapping time bins and compared by linear regression giving R2 = 0.809, SD = 0.060 m/s, intercept = - 0.039 m/s, and slope = 1.09. Excluding an outlier at the inlet, the correspondence between CFD and VFI improves to: R2 = 0.823, SD = 0.048 m/s, intercept = -0.030 m/s, and slope = 1.01.ConclusionThe direct comparison of flow patterns shows that the proposed CFD pipeline provide realistic flow patterns in a well-controlled experimental setup. The demanded accuracy is obtained close to the inlet and outlet, but not in locations far from these.
Project description:Micropillars have emerged as promising tools for a wide range of biological applications, while the influence of magnetic fields on cell behavior regulation has been increasingly recognized. However, the combined effect of micropillars and magnetic fields on cell behaviors remains poorly understood. In this study, we investigated the responses of H9c2 cells to ultramicromagnetic micropillar arrays using NdFeB as the tuned magnetic particles. We conducted a comparative analysis between PDMS micropillars and NdFeB/PDMS micropillars to assess their impact on cell function. Our results revealed that H9c2 cells exhibited significantly enhanced proliferation and notable cytoskeletal rearrangements on the ultramicromagnetic micropillars, surpassing the effects observed with pure PDMS micropillars. Immunostaining further indicated that cells cultured on ultramicromagnetic micropillars displayed heightened contractility compared to those on PDMS micropillars. Remarkably, the ultramicromagnetic micropillars also demonstrated the ability to decrease reactive oxygen species (ROS) levels, thereby preventing F-actin degeneration. Consequently, this study introduces ultramicromagnetic micropillars as a novel tool for the regulation and detection of cell behaviors, thus paving the way for advanced investigations in tissue engineering, single-cell analysis, and the development of flexible sensors for cellular-level studies.
Project description:Hemiwicking is the phenomena where a liquid wets a textured surface beyond its intrinsic wetting length due to capillary action and imbibition. In this work, we derive a simple analytical model for hemiwicking in micropillar arrays. The model is based on the combined effects of capillary action dictated by interfacial and intermolecular pressures gradients within the curved liquid meniscus and fluid drag from the pillars at ultra-low Reynolds numbers [Formula: see text]. Fluid drag is conceptualized via a critical Reynolds number: [Formula: see text], where v0 corresponds to the maximum wetting speed on a flat, dry surface and x0 is the extension length of the liquid meniscus that drives the bulk fluid toward the adsorbed thin-film region. The model is validated with wicking experiments on different hemiwicking surfaces in conjunction with v0 and x0 measurements using Water [Formula: see text], viscous FC-70 [Formula: see text] and lower viscosity Ethanol [Formula: see text].
Project description:Simple elastic network models of DNA were developed to reveal the structure-dynamics relationships for several nucleotide sequences. First, we propose a simple all-atom elastic network model of DNA that can explain the profiles of temperature factors for several crystal structures of DNA. Second, we propose a coarse-grained elastic network model of DNA, where each nucleotide is described only by one node. This model could effectively reproduce the detailed dynamics obtained with the all-atom elastic network model according to the sequence-dependent geometry. Through normal-mode analysis for the coarse-grained elastic network model, we exhaustively analyzed the dynamic features of a large number of long DNA sequences, approximately ∼150 bp in length. These analyses revealed positive correlations between the nucleosome-forming abilities and the inter-strand fluctuation strength of double-stranded DNA for several DNA sequences.