Project description:Infections by multidrug-resistant (MDR) Gram-negative organisms (GN) are associated with a high mortality rate and present an increasing challenge to the healthcare system worldwide. In recent years, increasing evidence supports the association between the healthcare environment and transmission of MDRGN to patients and healthcare workers. To better understand the role of the environment in transmission and acquisition of MDRGN, we conducted a utilitarian review based on literature published from 2014 until 2019.
Project description:BackgroundAntibiotic resistance is a challenge in the management of infectious diseases and can cause substantial cost. Even without the onset of infection, measures must be taken, as patients colonized with multi-drug resistant (MDR) pathogens may transmit the pathogen. We aim to quantify the cost of community-acquired MDR colonizations using routine data from a German teaching hospital.MethodsAll 2006 cases of documented MDR colonization at hospital admission recorded from 2011 to 2014 are matched to 7917 unexposed controls with the same primary diagnosis. Cases with an onset MDR infection are excluded from the analysis. Routine data on costs per case is analysed for three groups of MDR bacteria: Methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococcus (VRE), and multidrug-resistant gram-negative bacteria (MDR-GN). Multivariate analyses are conducted to adjust for potential confounders.ResultsAfter controlling for main diagnosis group, age, sex, and Charlson Comorbidity Index, MDR colonization is associated with substantial additional costs from the healthcare perspective (€1480.9, 95%CI €1286.4-€1675.5). Heterogeneity between pathogens remains. Colonization with MDR-GN leads to the largest cost increase (€1966.0, 95%CI €1634.6-€2297.4), followed by MRSA with €1651.3 (95%CI €1279.1-€2023.6), and VRE with €879.2 (95%CI €604.1-€1154.2). At the same time, MDR-GN is associated with additional reimbursements of €887.8 (95%CI €722.1-€1053.6), i.e. costs associated with MDR-colonization exceed reimbursement.ConclusionsEven without the onset of invasive infection, documented MDR-colonization at hospital admission is associated with increased hospital costs, which are not fully covered within the German DRG-based hospital payment system.
Project description:The recent emergence of multidrug-resistant (MDR) Klebsiella pneumoniae with hypervirulent traits causing severe infections and considerable mortality is a global cause for concern. The challenges posed by these hypermucoviscous strains of K. pneumoniae with regard to their optimal treatment, management, and control policies are yet to be answered. We studied a series of extensively drug-resistant (XDR) and hypervirulent K. pneumoniae ST5235 isolates with resistance to carbapenems and polymyxins causing neonatal sepsis in a tertiary care hospital in India. A total of 9 K. pneumoniae isolates from 9 cases of neonatal sepsis were studied with respect to their clinical relevance, antimicrobial susceptibility profile, presence of extended spectrum β lactamase (ESBL) production, and responsible genes, carbapenemases (classes A, B, and D), and aminoglycoside-resistant genes. Hypervirulence genes encoding hypermucoid nature, iron uptake, and siderophores were detected by multiplex PCR. The plasmid profile was studied by replicon typing. Isolates were typed by multilocus sequence typing (MLST) and enterobacterial repetitive intergenic consensus (ERIC) PCR to study the sequence types (STs) and clonal relation, respectively. The neonates in the studied cases had history of pre-maturity or low birth weight with maternal complications. All the cases were empirically treated with piperacillin-tazobactam and amikacin followed by imipenem/meropenem and vancomycin and polymyxin B as a last resort. However, all the neonates finally succumbed to the condition (100%). The studied isolates were XDR including resistance to polymyxins harboring multiple ESBL genes and carbapenemase genes (bla NDM and bla OXA-48). Hypervirulence genes were present in various combinations with rmpA/A2 genes present in all the isolates. IncFI plasmids were detected in these isolates. All belonged to ST5235. In ERIC PCR, 6 different clusters were seen. The study highlighted the emergence and burden of XDR hypervirulent isolates of K. pneumoniae causing neonatal sepsis in a tertiary care hospital.
Project description:Data specific to the epidemiology and burden of sepsis in low- and middle-income countries are limited. This study aimed to determine the epidemiology and burden of adult patients with sepsis at Siriraj Hospital during 2019. Randomly selected adult patients who had blood cultures performed at our center during January-December 2019 were enrolled. A Quick Sepsis-related Organ Failure Assessment (qSOFA) score was used to determine the presence of sepsis. Demographic data and clinical outcome data were collected, and the annual incidence of sepsis or septic shock and death was estimated. Of the 987 subjects who had blood cultures performed, 798 had infections, 341 had sepsis, and 104 had septic shock. The prevalence of sepsis or septic shock was 34.9% among blood cultured patients, and 42.7% among those with infections. The prevalence of septic shock was 30.5% among subjects with sepsis. Approximately 63% of sepsis subjects were hospital-acquired infections. The factors independently associated with 28-day mortality in sepsis were receiving an immunosuppressive agent (adjusted odds ratio [aOR]: 2.37, 95% confidence interval [CI]: 1.27-4.45; p = 0.007), septic shock (aOR: 2.88, 95% CI: 1.71-4.87; p < 0.001), and proven infection (aOR: 2.88, 95% CI: 1.55-5.36; p = 0.001). Receiving appropriate, definitive antibiotic therapy (ABT) was independently associated with lower mortality in sepsis (aOR: 0.50, 95% CI: 0.27-0.93; p = 0.028) and septic shock subjects (aOR: 0.21, 95% CI: 0.06-0.72; p = 0.013). Achievement of mean arterial pressure (MAP) ≥ 65 mmHg (aOR: 0.09, 95% CI: 0.01-0.77; p = 0.028) and urine output ≥ 0.5 mL/kg/h (aOR: 0.15, 95% CI: 0.04-0.51; p = 0.006) were independently associated with lower mortality in septic shock patients. The incidence and mortality of sepsis remains high. Appropriate choice of definitive ABT and achievement of MAP and urine output goals may lower mortality in patients with sepsis or septic shock.
Project description:UnlabelledBackgroundThe objective of this study was to assess the impact of antimicrobial stewardship programs on the multidrug resistance patterns of bacterial isolates. The study comprised an initial retrospective analysis of multidrug resistance in bacterial isolates for one year (July 2007-June 2008) followed by prospective evaluation of the impact of Antimicrobial Stewardship programs on resistance for two years and nine months (July 2008-March 2011).SettingA 300-bed tertiary care private hospital in Gurgaon, Haryana (India)FindingsMethodsStudy Design• July 2007 to June 2008: Resistance patterns of bacterial isolates were studied.• July 2008: Phase I intervention programme Implementation of an antibiotic policy in the hospital.• July 2008 to June 2010: Assessment of the impact of the Phase I intervention programme.• July 2010 to March 2011: Phase II intervention programme: Formation and effective functioning of the antimicrobial stewardship committee. Statistical correlation of the Defined daily dose (DDD) for prescribed drugs with the antimicrobial resistance of Gram negatives.ResultsPhase I intervention programme (July 2008) resulted in a decrease of 4.47% in ESBLs (E.coli and Klebsiella) and a significant decrease of 40.8% in carbapenem-resistant Pseudomonas. Phase II intervention (July 2010) brought a significant reduction (24.7%) in carbapenem-resistant Pseudomonas. However, the resistance in the other Gram negatives (E.coli, Klebsiella, and Acinetobacter) rose and then stabilized. A positive correlation was observed in Pseudomonas and Acinetobacter with carbapenems and cefoperazone-sulbactam.Piperacillin-tazobactam showed a positive correlation with Acinetobacter only. E.coli and Klebsiella showed positive correlation with cefoparazone-sulbactam and piperacillin-tazobactam.ConclusionAn antimicrobial stewardship programme with sustained and multifaceted efforts is essential to promote the judicious use of antibiotics.
Project description:BACKGROUND:Overcrowding, reduced nurse to patient ratio, limited distance between incubators and absence of microbiological surveillance have been shown to promote spread of multidrug-resistant gram-negative organisms (MDRGN) in patients with birthweight <?1500?g. Patients >?1500?g treated on an intermediate care unit are unrepresented in recent literature. We therefore intended to present data obtained from a short-term overcrowded neonatal intermediate care unit (NIMCU) at a level III (international categorization) perinatal center at University Hospital Frankfurt, Germany. METHODS:During a 25?day overcrowding (OV) and 28?day post-overcrowding period (POST-OV) on NIMCU, epidemiological data obtained from continuously hold microbiological surveillance were investigated and compared to the last 12?months of ward-regular bed occupancy preceding OV (PRAE-OV). RESULTS:During OV, the number of patients simultaneously treated at the NIMCU increased from 18 to 22, resulting in a reduced bed-to-bed space. Nurse: patient ratio was 4:22 during OV compared to 3:18 during PRAE-OV. Cumulative incidence of MDRGN was 4.7% in OV and 2.4% POST-OV compared to 4.8% to PRAE-OV, respectively, without any significant variations. During OV and POST-OV, septic episodes due to MDRGN were not observed. In one case, potential nosocomial transmission of Enterobacter cloacae resistant to Piperacillin and 3rd/4th generation cephalosporins was observed. CONCLUSIONS:Prevention of nosocomial spread of MDRGN in an overcrowded NIMCU is based on staff's diligent training and adequate staffing. Concise microbiological surveillance should be guaranteed to escort through overcrowding periods. In our setting, impact of bed-to-bed distance on MDRGN transmission seemed to be less strong.
Project description:BACKGROUND:Early diagnosis of neonatal sepsis is essential to prevent severe complications and avoid unnecessary use of antibiotics. The mortality of neonatal sepsis is over 18%in many countries. This study aimed to develop a predictive model for the diagnosis of bacterial late-onset neonatal sepsis. METHODS:A case-control study was conducted at Queen Sirikit National Institute of Child Health, Bangkok, Thailand. Data were derived from the medical records of 52 sepsis cases and 156 non-sepsis controls. Only proven bacterial neonatal sepsis cases were included in the sepsis group. The non-sepsis group consisted of neonates without any infection. Potential predictors consisted of risk factors, clinical conditions, laboratory data, and treatment modalities. The model was developed based on multiple logistic regression analysis. RESULTS:The incidence of late proven neonatal sepsis was 1.46%. The model had 6 significant variables: poor feeding, abnormal heart rate (outside the range 100-180 x/min), abnormal temperature (outside the range 36o-37.9 °C), abnormal oxygen saturation, abnormal leucocytes (according to Manroe's criteria by age), and abnormal pH (outside the range 7.27-7.45). The area below the Receiver Operating Characteristics (ROC) curve was 95.5%. The score had a sensitivity of 88.5% and specificity of 90.4%. CONCLUSION:A predictive model and a scoring system were developed for proven bacterial late-onset neonatal sepsis. This simpler tool is expected to somewhat replace microbiological culture, especially in resource-limited settings.
Project description:Klebsiella pneumoniae poses an urgent public health threat, causing nosocomial outbreaks in different continents. It has been observed to develop resistance to antimicrobials more easily than most bacteria. These days, multidrug-resistant strains are being increasingly reported from different countries. However, studies on the surveillance of multidrug-resistant Klebsiella pneumoniae are very rare in Ethiopia. This study aimed to determine the antimicrobial resistance patterns and magnitude of MDR K. pneumoniae isolates from patients attending or admitted to Tikur Anbessa Specialized Hospital (TASH). A cross-sectional study was conducted from September 2018 to February 2019 at TASH, Addis Ababa, Ethiopia. Identification of K. pneumoniae was done by examining the Gram stain, colony characteristics on MacConkey agar and 5% sheep blood agar, as well as using a series of biochemical tests. Antimicrobial susceptibility testing of the isolates for 21 antimicrobials was done by the Kirby-Bauer disc diffusion technique. Data were double entered using Epidata 3.1 and exported to SPSS version 25 software for analysis. Among the total K. pneumoniae isolates (n = 132), almost all 130 (98.5%) were MDR. Two (1.5%) isolates showed complete non-susceptibility to all antimicrobial agents tested. Moreover, a high rate of resistance was observed to cefotaxime and ceftriaxone 128 (97%), trimethoprim-sulfamethoxazole 124 (93.9%), and cefepime 111 (84.1%). High susceptibility was recorded to amikacin 123 (93.2%), imipenem 107 (81.1%), meropenem 96 (72.7%), and ertapenem 93 (70.5%). K. pneumoniae isolates showed a high rate of resistance to most of the tested antimicrobials. The magnitude of MDR K. pneumoniae was very alarming. Therefore, strengthening antimicrobial stewardship programs and antimicrobial surveillance practices is strongly recommended in TASH.
Project description:The COVID-19 pandemic has strained healthcare systems globally. Shortages of hospital beds, reassignment of healthcare workers to COVID-19-dedicated wards, an increased workload, and evolving infection prevention and control measures have potentially contributed to the spread of multidrug-resistant bacteria (MDRB). To determine the impact of the COVID-19 pandemic at the University Medical Center Ljubljana, a tertiary teaching hospital, we analyzed the monthly incidence of select bacterial species per patient from 2018 to 2022. The analysis was performed for all isolates and for MDRB isolates. The data were analyzed separately for isolates from all clinical samples, from blood culture only, and from clinical and surveillance samples. Our findings revealed an increased incidence density of patients with Enterococcus faecium, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa isolates from clinical samples during the COVID-19 period in the studied hospital. Notably, the incidence density of MDRB isolates-vancomycin-resistant E. faecium, extended-spectrum betalactamase-producing K. pneumoniae, and betalactam-resistant P. aeruginosa-from clinical samples increased during the COVID-19 period. There were no statistically significant differences in the incidence density of patients with blood culture MDRB isolates. We observed an increase in the overall MDRB burden (patients with MDRB isolates from both clinical and surveillance samples per 1000 patient days) in the COVID-19 period in the studied hospital for vancomycin-resistant E. faecium, carbapenem-resistant K. pneumoniae, and betalactam-resistant P. aeruginosa and a decrease in the methicillin-resistant S. aureus burden.