Project description:Microbial symbionts frequently localize within specific body structures or cell types of their multicellular hosts. This spatiotemporal niche is critical to host health, nutrient exchange, and fitness. Measuring host-microbe metabolite exchange has conventionally relied on tissue homogenates, eliminating dimensionality and dampening analytical sensitivity. We have developed a mass spectrometry imaging workflow for a soft- and hard-bodied cnidarian animal capable of revealing the host and symbiont metabolome in situ, without the need for a priori isotopic labelling or skeleton decalcification. The mass spectrometry imaging method provides critical functional insights that cannot be gleaned from bulk tissue analyses or other presently available spatial methods. We show that cnidarian hosts may regulate microalgal symbiont acquisition and rejection through specific ceramides distributed throughout the tissue lining the gastrovascular cavity. The distribution pattern of betaine lipids showed that once resident, symbionts primarily reside in light-exposed tentacles to generate photosynthate. Spatial patterns of these metabolites also revealed that symbiont identity can drive host metabolism.
Project description:Invertebrates represent about 95% of existing species, and most of them belong to aquatic ecosystems. Marine invertebrates are found at intermediate levels of the food chain and, therefore, they play a central role in the biodiversity of ecosystems. Furthermore, these organisms have a short life cycle, easy laboratory manipulation, and high sensitivity to marine pollution and, therefore, they are considered to be optimal bioindicators for assessing detrimental chemical agents that are related to the marine environment and with potential toxicity to human health, including neurotoxicity. In general, albeit simple, the nervous system of marine invertebrates is composed of neuronal and glial cells, and it exhibits biochemical and functional similarities with the vertebrate nervous system, including humans. In recent decades, new genetic and transcriptomic technologies have made the identification of many neural genes and transcription factors homologous to those in humans possible. Neuroinflammation, oxidative stress, and altered levels of neurotransmitters are some of the aspects of neurotoxic effects that can also occur in marine invertebrate organisms. The purpose of this review is to provide an overview of major marine pollutants, such as heavy metals, pesticides, and micro and nano-plastics, with a focus on their neurotoxic effects in marine invertebrate organisms. This review could be a stimulus to bio-research towards the use of invertebrate model systems other than traditional, ethically questionable, time-consuming, and highly expensive mammalian models.
Project description:BackgroundGelatinous zooplankton can be difficult to preserve morphologically due to unique physical properties of their cellular and acellular components. The relatively large volume of mesoglea leads to distortion of the delicate morphology and poor sample integrity in specimens prepared with standard aldehyde or alcohol fixation techniques. Similar challenges have made it difficult to extend standard laboratory methods such as in situ hybridization to larger juvenile ctenophores, hampering studies of late development.ResultsWe have found that a household water repellant glass treatment product commonly used in laboratories, Rain-X®, alone or in combination with standard aldehyde fixatives, greatly improves morphological preservation of such delicate samples. We present detailed methods for preservation of ctenophores of diverse sizes compatible with long-term storage or detection and localization of target molecules such as with immunohistochemistry and in situ hybridization and show that this fixation might be broadly useful for preservation of other delicate marine specimens.ConclusionThis new method will enable superior preservation of morphology in gelatinous specimens for a variety of downstream goals. Extending this method may improve the morphological fidelity and durability of museum and laboratory specimens for other delicate sample types.
Project description:Novel drug leads for malaria therapy are urgently needed because of the widespread emergence of resistance to all available drugs. Screening of the Harbor Branch enriched fraction library against the Plasmodium falciparum chloroquine-resistant strain (Dd2) followed by bioassay-guided fractionation led to the identification of two potent antiplasmodials; a novel diterpene designated as bebrycin A (1) and the known C21 degraded terpene nitenin (2). A SYBR Green I assay was used to establish a Dd2 EC50 of 1.08 ± 0.21 and 0.29 ± 0.02 µM for bebrycin A and nitenin, respectively. Further analysis was then performed to assess the stage specificity of the inhibitors antiplasmodial effects on the Dd2 intraerythrocytic life cycle. Exposure to bebrycin A was found to block parasite maturation at the schizont stage if added any time prior to late schizogony at 42 hours post invasion, (HPI). In contrast, early life cycle exposure to nitenin (prior to 18 HPI) was identified as crucial to parasite inhibition, suggesting nitenin may target the maturation of the parasite during the transition from ring to early trophozoite (6-18 HPI), a novel property among known antimalarials.
Project description:Inbreeding is a potent evolutionary force shaping the distribution of genetic variation within and among populations of plants and animals. Yet, our understanding of the forces shaping the expression and evolution of nonrandom mating in general, and inbreeding in particular, remains remarkably incomplete. Most research on plant mating systems focuses on self-fertilization and its consequences for automatic selection, inbreeding depression, purging, and reproductive assurance, whereas studies of animal mating systems have often assumed that inbreeding is rare, and that natural selection favors traits that promote outbreeding. Given that many sessile and sedentary marine invertebrates and marine macroalgae share key life history features with seed plants (e.g., low mobility, modular construction, and the release of gametes into the environment), their mating systems may be similar. Here, we show that published estimates of inbreeding coefficients (FIS ) for sessile and sedentary marine organisms are similar and at least as high as noted in terrestrial seed plants. We also found that variation in FIS within invertebrates is related to the potential to self-fertilize, disperse, and choose mates. The similarity of FIS for these organismal groups suggests that inbreeding could play a larger role in the evolution of sessile and sedentary marine organisms than is currently recognized. Specifically, associations between traits of marine invertebrates and FIS suggest that inbreeding could drive evolutionary transitions between hermaphroditism and separate sexes, direct development and multiphasic life cycles, and external and internal fertilization.
Project description:Low-density polyethylene (LDPE) is a major cause of persistent and long-term environmental pollution. In this paper, two bacterial isolates Bacillus amyloliquefaciens (BSM-1) and Bacillus amyloliquefaciens (BSM-2) were isolated from municipal solid soil and used for polymer degradation studies. The microbial degradation LDPE was analyzed by dry weight reduction of LDPE film, change in pH of culture media, CO2 estimation, scanning electron microscopy (SEM), and fourier transform infrared FTIR spectroscopy of the film surface. SEM analysis revealed that both the strains were exhibiting adherence and growth with LDPE which used as a sole carbon source while FTIR images showed various surface chemical changes after 60 days of incubation. Bacterial isolates showed the depolymerization of biodegraded products in the extracellular media indicating the biodegradation process. BSM-2 exhibited better degradation than BSM-1 which proves the potentiality of these strains to degrade LDPE films in a short span of time.
Project description:Patterns of population genetic variation have frequently been understood as consequences of life history covariates such as dispersal ability and breeding systems (e.g. selfing). For example, marine invertebrates show enormous variation in life history traits that are correlated with the extent of gene flow between populations and the magnitude of differentiation among populations at neutral genetic markers (FST). Here we document an unexpected correlation between marine invertebrate life histories and deviation from Hardy-Weinberg equilibrium (non-zero values of FIS, the inbreeding coefficient). FIS values were significantly higher in studies of species with free-spawned planktonic sperm than in studies of species that copulate or have some form of direct sperm transfer to females or benthic egg masses. This result was robust to several different analytical approaches. We note several mechanisms that might contribute to this pattern, and appeal for more studies and ideas that might help to explain our observations.