Project description:BackgroundCardiac aging represents an independent risk factor for aging-associated cardiovascular diseases. Although evidence suggests an association between NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome formation and numerous cardiovascular diseases, its role in cardiac aging remains largely unclear.Methods and resultsThe longevity of mice with wild-type and NLRP3 knockout (NLRP3-/-) genotypes was assessed, with or without d-galactose treatment. Cardiac function was evaluated using echocardiography, and cardiac histopathology was examined through hematoxylin and eosin and Masson's trichrome staining. Senescence-associated β-galactosidase (SA-β-gal) staining was employed to detect cardiac aging. Western blotting was used to assess aging-related proteins (p53, p21) and pyroptosis-related proteins. Additionally, dihydroethidium staining, lactate dehydrogenase release, and interleukin-1β ELISA assays were performed, along with measurements of total superoxide dismutase and malondialdehyde levels. In vitro, H9c2 cells were exposed to d-galactose for 24 hours in the absence or presence of N-acetyl-l-cysteine (reactive oxygen species inhibitor), BAY-117082 (nuclear factor κ-light-chain enhancer of activated B cells inhibitor), MCC950 (NLRP3 inhibitor), and VX-765 (Caspase-1 inhibitor). Immunofluorescence staining was employed to detect p53, gasdermin D, and apoptosis-associated speck-like protein proteins. Intracellular reactive oxygen species levels were assessed using fluorescence microscopy and flow cytometry. Senescence-associated β-galactosidase staining and Western blotting were also employed in vitro for the same purpose. The results showed that NLRP3 upregulation was implicated in aging and cardiovascular diseases. Inhibition of NLRP3 extended life span, mitigated the aging phenotype, improved cardiac function and blood pressure, ameliorated lipid metabolism abnormalities, inhibited pyroptosis in cardiomyocytes, and ultimately alleviated cardiac aging. In vitro, the inhibition of reactive oxygen species, nuclear factor κ-light-chain enhancer of activated B cells, NLRP3, or caspase-1 attenuated NLRP3 inflammasome-mediated pyroptosis.ConclusionsThe reactive oxygen species/nuclear factor κ-light-chain enhancer of activated B cells/NLRP3 signaling pathway loop contributes to d-galactose-treated cardiomyocyte senescence and cardiac aging.
Project description:AimsAccumulating evidence has suggested that airborne fine particulate matter (PM2.5) exposure is associated with an increased risk of ischemic stroke. However, the underlying mechanisms have not been fully elucidated. In this study, we aim to investigate the role and mechanisms of NLRP3 inflammasome and pyroptosis in ischemic stroke after PM2.5 exposure.MethodsThe BV-2 and HMC-3 microglial cell lines were established and subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) with or without PM2.5 exposure. We used the CCK-8 assay to explore the effects of PM2.5 on cell viability of BV-2 and HMC-3 cells. Then, the effects of PM2.5 exposure on NLRP3 inflammasome and pyroptosis following OGD/R were detected by western blotting, ELISA, and the confocal immunofluorescence staining. Afterwards, NLRP3 was knocked down to further validate the effects of PM2.5 on cell viability, NLRP3 inflammasome activation, and pyroptosis after OGD/R in HMC-3 cells. Finally, the intracellular reactive oxygen species (ROS) was measured and the ROS inhibitor N-acetyl-L-cysteine (NAC) was used to investigate whether ROS was required for PM2.5-induced NLRP3 inflammasome activation and pyroptosis under ischemic conditions.ResultsWe found that PM2.5 exposure decreased the viability of BV-2 and HMC-3 cells in a dose- and time-dependent manner under ischemic conditions. Furthermore, PM2.5 exposure aggravated NLRP3 inflammasome activation and pyroptosis after OGD/R, as indicated by an increased expression of NLRP3, ASC, pro-caspase-1, Caspase-1, GSDMD, and GSDMD-N; increased production of IL-1β and IL-18; and enhanced Caspase-1 activity and SYTOX green uptake. However, shRNA NLRP3 treatment attenuated the effects of PM2.5 on cell viability, NLRP3 inflammasome activation, and pyroptosis. Moreover, we observed that PM2.5 exposure increased the production of intracellular ROS following OGD/R, while inhibiting ROS production with NAC partially attenuated PM2.5-induced NLRP3 inflammasome activation and pyroptosis under ischemic conditions.ConclusionThese results suggested that PM2.5 exposure triggered the activation of NLRP3 inflammasome and pyroptosis under ischemic conditions, which may be mediated by increased ROS production after ischemic stroke. These findings may provide a more enhanced understanding of the interplay between PM2.5 and neuroinflammation and cell death, and reveal a novel mechanism of PM2.5-mediated toxic effects after ischemic stroke.
Project description:The reactive oxygen species- (ROS-) induced nod-like receptor protein-3 (NLRP3) inflammasome triggers sterile inflammatory responses and pyroptosis, which is a proinflammatory form of programmed cell death initiated by the activation of inflammatory caspases. NLRP3 inflammasome activation plays an important role in myocardial ischemia/reperfusion (MI/R) injury. Our present study investigated whether diabetes aggravated MI/R injury through NLRP3 inflammasome-mediated pyroptosis. Type 1 diabetic rat model was established by intraperitoneal injection of streptozotocin (60?mg/kg). MI/R was induced by ligating the left anterior descending artery (LAD) for 30?minutes followed by 2?h reperfusion. H9C2 cardiomyocytes were exposed to high glucose (HG, 30?mM) conditions and hypoxia/reoxygenation (H/R) stimulation. The myocardial infarct size, CK-MB, and LDH release in the diabetic rats subjected to MI/R were significantly higher than those in the nondiabetic rats, accompanied with increased NLRP3 inflammasome activation and increased pyroptosis. Inhibition of inflammasome activation with BAY11-7082 significantly decreased the MI/R injury. In vitro studies showed similar effects, as BAY11-7082 or the ROS scavenger N-acetylcysteine, attenuated HG and H/R-induced H9C2 cell injury. In conclusion, hyperglycaemia-induced NLRP3 inflammasome activation may be a ROS-dependent process in pyroptotic cell death, and NLRP3 inflammasome-induced pyroptosis aggravates MI/R injury in diabetic rats.
Project description:Calycosin (CAL) is the main active component present in Astragalus and reportedly possesses diverse pharmacological properties. However, the cardioprotective effect and underlying mechanism of CAL against doxorubicin- (DOX-) induced cardiotoxicity need to be comprehensively examined. Herein, we aimed to investigate whether the cardioprotective effects of CAL are related to its antipyroptotic effect. A cardiatoxicity model was established by stimulating H9c2 cells and C57BL/6J mice using DOX. In vitro, CAL increased H9c2 cell viability and decreased DOX-induced pyroptosis via NLRP3, caspase-1, and gasdermin D signaling pathways in a dose-dependent manner. In vivo, CAL-DOX cotreatment effectively suppressed DOX-induced cytotoxicity as well as inflammatory and cardiomyocyte pyroptosis via the same molecular mechanism. Next, we used nigericin (Nig) and NLRP3 forced overexpression to determine whether CAL imparts antipyroptotic effects by inhibiting the NLRP3 inflammasome in vitro. Furthermore, CAL suppressed DOX-induced mitochondrial oxidative stress injury in H9c2 cells by decreasing the generation of reactive oxygen species and increasing mitochondrial membrane potential and adenosine triphosphate. Likewise, CAL attenuated the DOX-induced increase in malondialdehyde content and decreased superoxide dismutase and glutathione peroxidase activities in H9c2 cells. In vivo, CAL afforded a protective effect against DOX-induced cardiac injury by improving myocardial function, inhibiting brain natriuretic peptide, and improving the changes of the histological morphology of DOX-treated mice. Collectively, our findings confirmed that CAL alleviates DOX-induced cardiotoxicity and pyroptosis by inhibiting NLRP3 inflammasome activation in vivo and in vitro.
Project description:Background and Aims: The activation of stimulator of interferon genes (STING) and NOD-like receptors protein 3 (NLRP3) inflammasomes-mediated pyroptosis signaling pathways represent two distinct central mechanisms in liver disease. However, the interconnection between these two pathways and the epigenetic regulation of the STING-NLRP3 axis in hepatocyte pyroptosis during liver fibrosis remain unknown and is the focus of this study. Approach and Results: Liver fibrosis was induced in Sting knockout, Gasdermin D (Gsdmd) knockout mice, and in mice with hepatocyte-specific Nlrp3 deletion. RNA-sequencing, metabolomics, epigenetic compound screening system, and chromatin immunoprecipitation were utilized. STING and NLRP3 inflammasome signaling pathways were activated in cirrhotic livers but were suppressed by Sting knockout. Sting knockout also ameliorated hepatic pyroptosis, inflammation, and fibrosis in the murine cirrhotic model. In vitro, STING induced pyroptosis in primary murine hepatocytes via activating the NLRP3 inflammasome. H3K4-specific histone methyltransferase WD repeat-containing protein 5 (WDR5) and DOT1-like histone H3K79 methyltransferase (DOT1L) were identified to regulate NLRP3 expression in STING-overexpressed AML12 hepatocytes. WDR5/DOT1L-mediated histone methylation enhanced interferon regulatory transcription factor 3 (IRF3) binding to the Nlrp3 promoter and promoted STING-induced Nlrp3 transcription in hepatocytes. The RNA-sequencing and metabolomics analysis in murine livers and primary hepatocytes showed that metabolic reprogramming might participate in NLRP3-mediated hepatocyte pyroptosis and liver fibrosis. Moreover, hepatocyte-specific Nlrp3 deletion and downstream Gsdmd knockout attenuated hepatic pyroptosis, inflammation, and fibrosis in murine cirrhotic models. Conclusions: This study describes a novel epigenetic mechanism by which the STING-WDR5/DOT1L/IRF3-NLRP3 signaling pathway enhances hepatocyte pyroptosis and hepatic inflammation in liver fibrosis.
Project description:Cathepsin B (CatB) is a cysteine proteolytic enzyme widely expressed in various cells and mainly located in the lysosomes. It contributes to the pathogenesis and development of many diseases. However, the role of CatB in viral myocarditis (VMC) has never been elucidated. Here we generated the VMC model by intraperitoneal injection of coxsackievirus B3 (CVB3) into mice. At day 7 and day 28, we found CatB was significantly activated in hearts from VMC mice. Compared with the wild-type mice receiving equal amount of CVB3, genetic ablation of CatB (Ctsb-/-) significantly improved survival, reduced inflammatory cell infiltration, decreased serum level of cardiac troponin I, and ameliorated cardiac dysfunction, without altering virus titers in hearts. Conversely, genetic deletion of cystatin C (Cstc-/-), which markedly enhanced CatB levels in hearts, distinctly increased the severity of VMC. Furthermore, compared with the control, we found the inflammasome was activated in the hearts of wild-type mice with VMC, which was attenuated in the hearts of Ctsb-/- mice but was further enhanced in Cstc-/- mice. Consistently, the inflammasome-initiated pyroptosis was reduced in Ctsb-/- mice hearts and further increased in Cstc-/- mice. These results suggest that CatB aggravates CVB3-induced VMC probably through activating the inflammasome and promoting pyroptosis. This finding might provide a novel strategy for VMC treatment.
Project description:The activation of stimulator of interferon genes (STING) and NOD-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis signaling pathways represent two distinct central mechanisms in liver disease. However, the interconnections between these two pathways and the epigenetic regulation of the STING-NLRP3 axis in hepatocyte pyroptosis during liver fibrosis remain unknown. STING and NLRP3 inflammasome signaling pathways are activated in fibrotic livers but are suppressed by Sting knockout. Sting knockout ameliorated hepatic pyroptosis, inflammation, and fibrosis. In vitro, STING induces pyroptosis in primary murine hepatocytes by activating the NLRP3 inflammasome. H3K4-specific histone methyltransferase WD repeat-containing protein 5 (WDR5) and DOT1-like histone H3K79 methyltransferase (DOT1L) are identified to regulate NLRP3 expression in STING-overexpressing AML12 hepatocytes. WDR5/DOT1L-mediated histone methylation enhances interferon regulatory transcription factor 3 (IRF3) binding to the Nlrp3 promoter and promotes STING-induced Nlrp3 transcription in hepatocytes. Moreover, hepatocyte-specific Nlrp3 deletion and downstream Gasdermin D (Gsdmd) knockout attenuate hepatic pyroptosis, inflammation, and fibrosis. RNA-sequencing and metabolomics analysis in murine livers and primary hepatocytes show that oxidative stress and metabolic reprogramming might participate in NLRP3-mediated hepatocyte pyroptosis and liver fibrosis. The STING-NLRP3-GSDMD axis inhibition suppresses hepatic ROS generation. In conclusion, this study describes a novel epigenetic mechanism by which the STING-WDR5/DOT1L/IRF3-NLRP3 signaling pathway enhances hepatocyte pyroptosis and hepatic inflammation in liver fibrosis.
Project description:Abdominal aortic aneurysm (AAA) is defined as a dilated aorta in diameter at least 1.5 times of a normal aorta. Our previous studies found that activating α7 nicotinic acetylcholine receptor (α7nAChR) had a protective effect on vascular injury. This work was to investigate whether activating α7nAChR could influence AAA formation and explore its mechanisms. AAA models were established by angiotensin II (Ang II) infusion in ApoE-/- mice or in wild type and α7nAChR-/- mice. In vitro mouse aortic smooth muscle (MOVAS) cells were treated with tumor necrosis factor-α (TNF-α). PNU-282987 was chosen to activate α7nAChR. We found that cell pyroptosis effector GSDMD and NLRP3 inflammasome were activated in abdominal aorta, and inflammatory cytokines in serum were elevated in AAA models of ApoE-/- mice. Activating α7nAChR reduced maximal aortic diameters, preserved elastin integrity and decreased inflammatory responses in ApoE-/- mice with Ang II infusion. While α7nAChR-/- mice led to aggravated aortic injury and increased inflammatory cytokines with Ang II infusion when compared with wild type. Moreover, activating α7nAChR inhibited NLRP3/caspase-1/GSDMD pathway in AAA model of ApoE-/- mice, while α7nAChR deficiency promoted this pathway. In vitro, N-acetylcysteine (NAC) inhibited NLRP3 inflammasome activation and NLRP3 knockdown reduced GSDMD expression, in MOVAS cells treated with TNF-α. Furthermore, activating α7nAChR inhibited oxidative stress, reduced NLRP3/GSDMD expression, and decreased cell pyroptosis in MOVAS cells with TNF-α. In conclusion, our study found that activating α7nAChR retarded AAA through inhibiting pyroptosis mediated by NLRP3 inflammasome. These suggested that α7nAChR would be a potential pharmacological target for AAA.
Project description:A major cause of proteinuria in lupus nephritis (LN) is podocyte injury, and determining potential therapeutic targets to prevent podocyte injury is important from a clinical perspective in the treatment of LN. CD36 is involved in podocyte injury in several glomerulopathies and was reported to be a vital candidate gene in LN. Here, we determined the role of CD36 in the podocyte injury of LN and the underlying mechanisms. We observed that CD36 and NLRP3 (NLR family pyrin domain containing 3) were upregulated in the podocytes of lupus nephritis patients and MRL/lpr mice with renal impairment. In vitro, CD36, NLRP3 inflammasome, and autophagy were elevated accompanied with increased podocyte injury stimulated by IgG extracted from lupus nephritis patients compared that from healthy donors. Knocking out CD36 with the CRISPR/cas9 system decreased the NLRP3 inflammasome levels, increased the autophagy levels and alleviated podocyte injury. By enhancing autophagy, NLRP3 inflammasome was decreased and podocyte injury was alleviated. These results demonstrated that, in lupus nephritis, CD36 promoted podocyte injury by activating NLRP3 inflammasome and inhibiting autophagy by enhancing which could decrease NLRP3 inflammasome and alleviate podocyte injury.
Project description:Extracellular vesicles (EVs) have emerged as important vectors of intercellular dialogue. High mobility group box protein 1 (HMGB1) is a typical damage-associated molecular pattern (DAMP) molecule, which is cytotoxic and leads to cell death and tissue injury. Whether EVs are involved in the release of HMGB1 in lipopolysaccharide (LPS)-induced acute liver injuries need more investigation. EVs were identified by transmission electron microscopy, nanoparticle tracking analysis (NTA), and western blotting. The co-localization of HMGB1, RAGE (receptor for advanced glycation end-products), EEA1, Rab5, Rab7, Lamp1 and transferrin were detected by confocal microscopy. The interaction of HMGB1 and RAGE were investigated by co-immunoprecipitation. EVs were labeled with the PKH67 and used for uptake experiments. The pyroptotic cell death was determined by FLICA 660-YVAD-FMK. The expression of NLRP3 (NOD-like receptor family pyrin domain containing 3) inflammasomes were analyzed by western-blot or immunohistochemistry. Serum HMGB1, ALT (alanine aminotransferase), AST (aspartate aminotransferase), LDH (lactate dehydrogenase) and MPO (myeloperoxidase) were measured using a commercial kit. The extracellular vesicle HMGB1 was detected in the serums of sepsis patients. Macrophages were found to contribute to HMGB1 release through the EVs. HMGB1-RAGE interactions participated in the loading of HMGB1 into the EVs. These EVs shuttled HMGB1 to target cells by transferrin-mediated endocytosis leading to hepatocyte pyroptosis by the activation of NLRP3 inflammasomes. Moreover, a positive correlation was verified between the sepsis serum EVs-HMGB1 level and clinical liver damage. This finding provides insights for the development of novel diagnostic and therapeutic strategies for acute liver injuries.