Unknown

Dataset Information

0

Boosting exciton mobility approaching Mott-Ioffe-Regel limit in Ruddlesden-Popper perovskites by anchoring the organic cation.


ABSTRACT: Exciton transport in two-dimensional Ruddlesden-Popper perovskite plays a pivotal role for their optoelectronic performance. However, a clear photophysical picture of exciton transport is still lacking due to strong confinement effects and intricate exciton-phonon interactions in an organic-inorganic hybrid lattice. Herein, we present a systematical study on exciton transport in (BA)2(MA)n-1PbnI3n+1 Ruddlesden-Popper perovskites using time-resolved photoluminescence microscopy. We reveal that the free exciton mobilities in exfoliated thin flakes can be improved from around 8 cm2 V-1 s-1 to 280 cm2V-1s-1 by anchoring the soft butyl ammonium cation with a polymethyl methacrylate network at the surface. The mobility of the latter is close to the theoretical limit of Mott-Ioffe-Regel criterion. Combining optical measurements and theoretical studies, it is unveiled that the polymethyl methacrylate network significantly improve the lattice rigidity resulting in the decrease of deformation potential scattering and lattice fluctuation at the surface few layers. Our work elucidates the origin of high exciton mobility in Ruddlesden-Popper perovskites and opens up avenues to regulate exciton transport in two-dimensional materials.

SUBMITTER: Gong Y 

PROVIDER: S-EPMC10904778 | biostudies-literature | 2024 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Boosting exciton mobility approaching Mott-Ioffe-Regel limit in Ruddlesden-Popper perovskites by anchoring the organic cation.

Gong Yiyang Y   Yue Shuai S   Liang Yin Y   Du Wenna W   Bian Tieyuan T   Jiang Chuanxiu C   Bao Xiaotian X   Zhang Shuai S   Long Mingzhu M   Zhou Guofu G   Yin Jun J   Deng Shibin S   Zhang Qing Q   Wu Bo B   Liu Xinfeng X  

Nature communications 20240229 1


Exciton transport in two-dimensional Ruddlesden-Popper perovskite plays a pivotal role for their optoelectronic performance. However, a clear photophysical picture of exciton transport is still lacking due to strong confinement effects and intricate exciton-phonon interactions in an organic-inorganic hybrid lattice. Herein, we present a systematical study on exciton transport in (BA)<sub>2</sub>(MA)<sub>n-1</sub>Pb<sub>n</sub>I<sub>3n+1</sub> Ruddlesden-Popper perovskites using time-resolved pho  ...[more]

Similar Datasets

| S-EPMC11001939 | biostudies-literature
| S-EPMC9748757 | biostudies-literature
| S-EPMC7740094 | biostudies-literature
| S-EPMC10626601 | biostudies-literature
| S-EPMC8748742 | biostudies-literature
| S-EPMC7552078 | biostudies-literature
| S-EPMC7910601 | biostudies-literature
| S-EPMC11440594 | biostudies-literature
| S-EPMC6671992 | biostudies-literature
| S-EPMC7214453 | biostudies-literature