Project description:BackgroundMobile animals transport nutrients and propagules across habitats, and are crucial for the functioning of food webs and for ecosystem services. Human activities such as urbanization can alter animal movement behavior, including site fidelity and resource use. Because many urban areas are adjacent to natural sites, mobile animals might connect natural and urban habitats. More generally, understanding animal movement patterns in urban areas can help predict how urban expansion will affect the roles of highly mobile animals in ecological processes.MethodsHere, we examined movements by a seasonally nomadic wading bird, the American white ibis (Eudocimus albus), in South Florida, USA. White ibis are colonial wading birds that forage on aquatic prey; in recent years, some ibis have shifted their behavior to forage in urban parks, where they are fed by people. We used a spatial network approach to investigate how individual movement patterns influence connectivity between urban and non-urban sites. We built a network of habitat connectivity using GPS tracking data from ibis during their non-breeding season and compared this network to simulated networks that assumed individuals moved indiscriminately with respect to habitat type.ResultsWe found that the observed network was less connected than the simulated networks, that urban-urban and natural-natural connections were strong, and that individuals using urban sites had the least-variable habitat use. Importantly, the few ibis that used both urban and natural habitats contributed the most to connectivity.ConclusionsHabitat specialization in urban-acclimated wildlife could reduce the exchange of propagules and nutrients between urban and natural areas, which has consequences both for beneficial effects of connectivity such as gene flow and for detrimental effects such as the spread of contaminants or pathogens.
Project description:Understanding dispersal and habitat selection behaviours is central to many problems in ecology, evolution and conservation. One factor often hypothesized to influence habitat selection by dispersers is the natal environment experienced by juveniles. Nonetheless, evidence for the effect of natal environment on dispersing, wild vertebrates remains limited. Using 18 years of nesting and mark-resight data across an entire North American geographical range of an endangered bird, the snail kite (Rostrhamus sociabilis), we tested for natal effects on breeding-site selection by dispersers and its consequences for reproductive success and population structure. Dispersing snail kites were more likely to nest in wetlands of the same habitat type (lacustrine or palustrine) as their natal wetland, independent of dispersal distance, but this preference declined with age and if individuals were born during droughts. Importantly, dispersing kites that bred in natal-like habitats had lower nest success and productivity than kites that did not. These behaviours help explain recently described population connectivity and spatial structure across their geographical range and reveal that assortative breeding is occurring, where birds are more likely to breed with individuals born in the same wetland type as their natal habitat. Natal environments can thus have long-term and large-scale effects on populations in nature, even in highly mobile animals.
Project description:Natal habitat preference induction (NHPI) occurs when animals exhibit a preference for new habitat that is similar to that which they experienced in their natal environment, potentially leading to post-dispersal success. While the study of NHPI is typically focused on post-settlement home ranges, we investigated how this behavior may manifest during extra-home range movements (EHRMs), both to identify exploratory prospecting behavior and assess how natal habitat cues may influence path selection before settlement. We analyzed GPS collar relocation data collected during 79 EHRMs made by 34 juvenile and subadult white-tailed deer (Odocoileus virginianus) across an agricultural landscape with highly fragmented forests in Illinois, USA. We developed a workflow to measure multidimensional natal habitat dissimilarity for each EHRM relocation and fit step-selection functions to evaluate whether natal habitat similarity explained habitat selection along movement paths. Across seasons, selection for natal habitat similarity was generally weak during excursive movements, but strong during dispersals, indicating that NHPI is manifested in dispersal habitat selection in this study system and bolstering the hypothesis that excursive movements differ functionally from dispersal. Our approach for extending the NHPI hypothesis to behavior during EHRMs can be applied to a variety of taxa and can expand our understanding of how individual behavioral variation and early life experience may shape connectivity and resistance across landscapes.
Project description:Natal habitat preference induction (NHPI) is a mechanism for habitat selection by individuals during natal dispersal. NHPI occurs in wild animal populations, and evidence suggests it may be a common, although little studied, mechanism for post-dispersal habitat selection. Most tests of NHPI examine the influence of distinct, contrasting natal habitat types on post-dispersal habitat selection. We test the hypothesis that NHPI can occur within a single habitat type, an important consideration for habitat specialists. The Mount Graham red squirrel (Tamiasciurus hudsonicus grahamensis) is an endangered forest obligate restricted to a single mountain primarily within mixed-conifer forest. We test for NHPI by comparing intra-individual differences in natal and settlement habitat structure and composition to expected random pairwise differences. Dispersing juveniles appear to select settlement locations that are more similar to natal areas than expected in several forest structure and composition variables that include canopy cover and live basal area. Our results provide support for NHPI as a mechanism for post-dispersal habitat selection in habitat specialists that occupy a single vegetation community type.
Project description:The loss of biodiversity following fragmentation and degradation of habitat is a major issue in conservation biology. As competition for resources increases following habitat loss and fragmentation, severe population declines may occur even in common, highly mobile species; such demographic decline may cause changes within the population structure of the species. The regent honeyeater, Anthochaera phrygia, is a highly nomadic woodland bird once common in its native southeast Australia. It has experienced a sharp decline in abundance since the late 1970s, following clearing of large areas of its preferred habitat, box-ironbark woodland, within the last 200 years. A captive breeding program has been established as part of efforts to restore this species. This study used genetic data to examine the range-wide population structure of regent honeyeaters, including spatial structure, its change through time, sex differences in philopatry and mobility, and genetic differences between the captive and wild populations. There was low genetic differentiation between birds captured in different geographic areas. Despite the recent demographic decline, low spatial structure appears to have some temporal consistency. Both sexes appear to be highly mobile, and there does not seem to be significant genetic differentiation between the captive and wild populations. We conclude that management efforts for survival of this species, including habitat protection, restoration, and release of captive-bred birds into the wild, can treat the species as effectively a single genetic population.
Project description:Many species show natal habitat preference induction (NHPI), a behavior in which young adults select habitats similar to those in which they were raised. However, we know little about how NHPI develops in natural systems. Here, we tested for NHPI in juvenile common loons (Gavia immer) that foraged on lakes in the vicinity of their natal lake after fledging. Juveniles visited lakes similar in pH to their natal lakes, and this significant effect persisted after controlling for spatial autocorrelation. On the other hand, juveniles showed no preference for foraging lakes of similar size to their natal one. When lakes were assigned to discrete classes based on size, depth, visibility, and trophic complexity, both juveniles from large lakes and small lakes preferred to visit large, trophically diverse lakes, which contained abundant food. Our results contrast with earlier findings, which show strict preference for lakes similar in size to the natal lake among young adults seeking to settle on a breeding lake. We suggest that NHPI is relaxed for juveniles, presumably because they select lakes that optimize short-term survival and growth. By characterizing NHPI during a poorly studied life stage, this study illustrates that NHPI can take different forms at different life stages.
Project description:BackgroundUnderstanding how island ecosystems change across habitats is a major challenge in ecological conservation under the conditions of habitat degradation. According to a 2-year investigation on Dong Island of the Paracel Islands, South China Sea, we assessed the roles of different habitats at the species level and community level of birds using topological and network analysis.ResultsIn addition to the thousands of Sula sula (a large-sized arboreal seabird) inhabiting the forests, there were 56 other bird species were recorded, representing 23 families and 12 orders, ranging in habitats of wetlands, forests, shrublands, grasslands, and/or beaches. The bird-habitat network had high nestedness, and bird species showed obvious clustering distribution. Integrated topological and network analysis showed that wetlands had a high contribution to species diversity and network structure, and it was a cluster center of migrant birds. Forests and grasslands were species hub and connector respectively, and forests were also the key habitat for residents. Beaches and shrublands were peripherals. The loss of wetlands and forests will result in a sharp reduction of species richness, and even make the S. sula, and most of the resident birds, become locally extinct.ConclusionsThese results suggest that the wetland and forest habitats on the focal island are key important for migrant birds and resident birds respectively, and therefore much more attention should be paid to conservation of the focal island ecosystems.
Project description:Large carnivores have experienced considerable range contraction, increasing the importance of movement across human-altered landscapes between small, isolated populations. African wild dogs (Lycaon pictus) are exceptionally wide-ranging, and recolonization is an important element of their persistence at broad scales. The competition-movement-connection hypothesis suggests that adaptations to move through areas that are unfavorable due to dominant competitors might promote the ability of subordinate competitors (like wild dogs) to move through areas that are unfavorable due to humans. Here, we used hidden Markov models to test how wild dog movements were affected by the Human Footprint Index in areas inside and outside of South Luangwa National Park. Movements were faster and more directed when outside the National Park, but slowed where the human footprint was stronger. Our results can be directly and quantitatively applied to connectivity planning, and we use them to identify ways to better understand differences between species in recent loss of connectivity.
Project description:More studies are needed on the mechanism and effective prediction of bird diversity in various habitats. The primary purpose of this study was to explore the difference in the species richness and evenness of various habitats. The secondary purpose was to explore which habitat types and compositions predict a high bird diversity. The 2010-2016 Taiwan Breeding Bird Survey was used to analyze the relationship between landscape habitat and bird ecology. Landscape habitat type was divided into seven categories and 26 sub-types: forestland, farmland, grassland, freshwater wetland, aquaculture pond and saltpan, coastland, and building area. Four ecological indexes were used: the number of bird individuals, the number of species, the Margalef Richness Index, and the Pielou Evenness Index. The result indicated that forestland decreased bird numbers, except in a windbreak forest. Natural and farmland-related habitats increased bird species richness. Similarly, the natural habitat increased species evenness. Urban greenspace could not replace the effect of forestland on species richness and evenness. Conifer forest, bamboo forest, windbreak forest, mixed tree, tall grassland, and orchard were important habitats for promoting higher species richness and evenness.
Project description:There is growing recognition that variation in animal personality traits can influence survival and reproduction rates, and consequently may be important for wildlife population dynamics. Despite this, the integration of personality research into conservation has remained uncommon. Alongside the establishment of personality as an important source of individual variation has come an increasing interest in factors affecting the development of personality. Recent work indicates the early environment, including natal nutrition, may play a stronger role in the development of personality than previously thought. In this study, we investigated the importance of three personality metrics (activity, boldness and acclimation time) for estimating survival of a threatened species, the hihi (Notiomystis cincta), and evaluated the influence of early natal nutrition on those metrics. Our results showed that boldness (as measured from a one-off cage test) had a positive effect on the probability of juvenile hihi surviving to adulthood. There was also a tendency for juveniles that received carotenoid supplementation in the nest to be bolder than those that did not, suggesting that the early environment had some influence on the expression of boldness in juvenile hihi. Linking the development of personality traits with ultimate effects on vital rates may benefit conservation management, as it could enable developmentally targeted management interventions. To our knowledge, this study is the first to identify potential linkages between early natal nutrition, personality and fitness in a wild-living population. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.