Project description:Emergent aquatic plants mostly occur in shallow waters and root in bottom substrates, but their leaves emerge from the water surface and are thus exposed to air, similar to the leaves of terrestrial plants. Previous studies have found coordination between leaf water supply and demand in terrestrial plants; however, whether such a coordination exists in emergent aquatic plants remains unknown. In this study, we analysed leaf veins and stomatal characteristics of 14 emergent aquatic and 13 terrestrial monocotyledonous herb species (EMH and TMH), with 5 EMH and 8 TMH belonging to Poaceae. We found that EMH had significantly higher mean leaf area, leaf thickness, stomatal density, stomatal number per vein length and major vein diameter, but lower mean major vein length per area (VLA) and total VLA than TMH. There was no significant difference in stomatal length, minor VLA and minor vein diameter between the two groups. Stomatal density and total VLA were positively correlated among the EMH, TMH, as well as the 8 Poaceae TMH species, but this correlation became non-significant when data from both the groups were pooled. Our results showed that the differences in water supply between emergent aquatic and terrestrial plants modify the coordination of their leaf veins and stomatal traits.
Project description:Background and aimsLeaf gas exchange is influenced by stomatal size, density, distribution between the leaf adaxial and abaxial sides, as well as by pore dimensions. This study aims to quantify which of these traits mainly underlie genetic differences in operating stomatal conductance (gs) and addresses possible links between anatomical traits and regulation of pore width.MethodsStomatal responsiveness to desiccation, gs-related anatomical traits of each leaf side and estimated gs (based on these traits) were determined for 54 introgression lines (ILs) generated by introgressing segments of Solanum pennelli into the S. lycopersicum 'M82'. A quantitative trait locus (QTL) analysis for stomatal traits was also performed.Key resultsA wide genetic variation in stomatal responsiveness to desiccation was observed, a large part of which was explained by stomatal length. Operating gs ranged over a factor of five between ILs. The pore area per stomatal area varied 8-fold among ILs (2-16 %), and was the main determinant of differences in operating gs between ILs. Operating gs was primarily positioned on the abaxial surface (60-83 %), due to higher abaxial stomatal density and, secondarily, to larger abaxial pore area. An analysis revealed 64 QTLs for stomatal traits in the ILs, most of which were in the direction of S. pennellii.ConclusionsThe data indicate that operating and maximum gs of non-stressed leaves maintained under stable conditions deviate considerably (by 45-91 %), because stomatal size inadequately reflects operating pore area (R(2) = 0·46). Furthermore, it was found that variation between ILs in both stomatal sensitivity to desiccation and operating gs is associated with features of individual stoma. In contrast, genotypic variation in gs partitioning depends on the distribution of stomata between the leaf adaxial and abaxial epidermis.
Project description:Leaves are enormously diverse in their size and venation architecture, both of which are core determinants of plant adaptation to environments. Leaf size is an important determinant of leaf function and ecological strategy, while leaf venation, the main structure for support and transport, determines the growth, development, and performance of a leaf. The scaling relationship between venation architecture and leaf size has been explored, but the relationship within a community and its potential variations among species with different vein types and leaf habits have not been investigated. Here, we measured vein traits and leaf size across 39 broad-leaved woody species within a subtropical forest community in China and analyzed the scaling relationship using ordinary least squares and standard major axis method. Then, we compared our results with the global dataset. The major vein density, and the ratio of major (1° and 2°) to minor (3° and higher) vein density both geometrically declined with leaf size across different vein types and leaf habits. Further, palmate-veined species have higher major vein density and a higher ratio of major to minor vein density at the given leaf size than pinnate-veined species, while evergreen and deciduous species showed no difference. These robust trends were confirmed by reanalyzing the global dataset using the same major vein classification as ours. We also found a tradeoff between the cell wall mass per vein length of the major vein and the major vein density. These vein scaling relationships have important implications on the optimization of leaf size, niche differentiation of coexisting species, plant drought tolerance, and species distribution.
Project description:BACKGROUND AND AIMS:In some dicotyledonous leaves and leaflets, the secondary veins run more-or-less straight to the margins and have well-defined lengths. For a given half-lamina of length L, an equation, previously proposed, relates the lengths of these veins, p, to the distances, l, between the leaf tip and their insertions on the midrib: p = B2(x+y)l(x)(L - l)(y)/L(x+y-1), where B, x and y are fitted parameters. Aspects of the formula are re-examined, including its general applicability, significance and usefulness. METHODS:Length measurements were made on leaves of various dicotyledons, notably Ulmus glabra, U. procera, Alnus viridis, A. glutinosa, Corylus avellana and Crataegus monogyna. Equations were fitted by non-linear regression. KEY RESULTS:The equation has now been applied descriptively to 23 species of eight families, but it is sometimes preferable or necessary to replace the measured length, L, with a fourth parameter that may differ significantly from it. Within a given species, values of the indices x and y are positively correlated. Leaves of some U. glabra depart qualitatively from the general pattern. As an example of hypothesis testing, the equation was used to show that the retuse or emarginate leaf tips of A. glutinosa are not due to stunting. CONCLUSIONS; That the equation applies to many species suggests that the underlying processes of leaf growth are quantitatively similar. Although relevant knowledge of these is scant, consideration of mathematical relationships may help their elucidation.
Project description:Understanding the drivers of trait selection is critical for resolving community assembly processes. Here, we test the importance of environmental filtering and trait covariance for structuring the functional traits of understory herbaceous communities distributed along a natural environmental resource gradient that varied in soil moisture, temperature, and nitrogen availability, produced by different topographic positions in the southern Appalachian Mountains.To uncover potential differences in community-level trait responses to the resource gradient, we quantified the averages and variances of both abundance-weighted and unweighted values for six functional traits (vegetative height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, and leaf δ13C) using 15 individuals of each of the 108 species of understory herbs found at two sites in the southern Appalachians of western North Carolina, USA.Environmental variables were better predictors of weighted than unweighted community-level average trait values for all but height and leaf N, indicating strong environmental filtering of plant abundance. Community-level variance patterns also showed increased convergence of abundance-weighted traits as resource limitation became more severe.Functional trait covariance patterns based on weighted averages were uniform across the gradient, whereas coordination based on unweighted averages was inconsistent and varied with environmental context. In line with these results, structural equation modeling revealed that unweighted community-average traits responded directly to local environmental variation, whereas weighted community-average traits responded indirectly to local environmental variation through trait coordination.Our finding that trait coordination is more important for explaining the distribution of weighted than unweighted average trait values along the gradient indicates that environmental filtering acts on multiple traits simultaneously, with abundant species possessing more favorable combinations of traits for maximizing fitness in a given environment.
Project description:PremiseAcross species, main leaf vein density scales inversely with leaf area (A). Yet, minor vein density manifests no clear relationship with respect to A, despite having the potential to provide important insights into the trade-off among the investments in leaf mechanical support, hydraulics, and light interception.MethodsTo examine this phenomenon, the leaves of nine Magnoliaceae leaves were sampled, and the scaling relationships among A and midrib length (ML), total vein length (TVL), total vein area (TVA), total areole area (TAA), and mean areole area (MAA) were determined. The scaling relationships between MAA and areole density (the number of areoles per unit leaf area) and between MAA and A were also analyzed.ResultsFor five of the nine species, A was proportional to ML2 . For eight of the nine species, TVL and TVA were both proportional to A. The numerical values of the scaling exponents for TAA vs. A were between 1.0 and 1.07 for eight species; i.e., as expected, TAA was isometrically proportional to A. There was no correlation between MAA and A, but MAA scaled inversely with respect to areole density for each species.ConclusionsThe correlation between midrib "density" (i.e., ML/A) and A, and the lack of correlation between total leaf vein density and A result from the A ∝$\propto $ ML2 scaling relationship and the proportional relationship between TVL and A, respectively. Leaves with the same size can have widely varying MAA. Thus, leaf size itself does not directly constrain leaf hydraulic efficiency and redundancy.
Project description:Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes A development or differentiation experiment design type assays events associated with development or differentiation or moving through a life cycle. Development applies to organism(s) acquiring a mature state, and differentiation applies to cells acquiring specialized functions. Computed
Project description:RNA from six developmental stages during the Drosophila life cycle (0-2hr embryos, 3-16hr embryos, larvae, pupae, male and female adults) was isolated, reverse transcribed in the presence of oligodT and random hexamers and the labeled cDNA was hybridized to these arrays.Each sample was hybridized four times, twice with Cy5 labeling and twice with Cy3 labeling. Keywords: other
Project description:Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes A development or differentiation experiment design type assays events associated with development or differentiation or moving through a life cycle. Development applies to organism(s) acquiring a mature state, and differentiation applies to cells acquiring specialized functions. Keywords: development_or_differentiation_design
Project description:The density and architecture of leaf veins determine the network and efficiency of water transport within laminae and resultant leaf gas exchange and vary widely among plant species. Leaf hydraulic conductance ( Kleaf) can be regulated by vein architecture in conjunction with the water channel protein aquaporin. However, our understanding of how leaf veins and aquaporins affect leaf hydraulics and stomatal conductance ( gs) remains poor. By inducing blockage of the major veins and inhibition of aquaporin activity using HgCl2, we examined the effects of major veins and aquaporins on Kleaf and gs in species with different venation types. A vine species, with thick first-order veins and low vein density, displayed a rapidly declined gs with high leaf water potential in response to vein blockage and a greatly reduced Kleaf and gs in response to aquaporin inhibition, suggesting that leaf aquaporins are involved in isohydric/anisohydric stomatal behaviour. Across species, the decline in Kleaf and gs due to aquaporin inhibition increased linearly with decreasing major vein density, possibly indicating that a trade-off function between vein architecture (apoplastic pathway) and aquaporin activity (cell-to-cell pathway) affects leaf hydraulics.