Project description:This work studies, for the first time, the effect of the use of Cabernet Sauvignon vine-shoots as an enological additive (called "Shoot Enological Granule", SEG) in wines of the same variety. SEGs were added in two doses (12 and 24 g/L) at the end of malolactic fermentation, and after that, wines were bottled for six months. The phenolic and volatile composition and sensory profiles of wines were analyzed at bottling and after six months. The results showed a decrease in the total content of phenolic compounds with bottle time; however, stilbenes─specifically trans-resveratrol─were maintained at significant levels in SEG wines. In contrast, the total content of volatile compounds, mainly esters, increased with bottle aging. Finally, in terms of sensory profile, SEG wines showed a clear differentiation between the descriptors and the control, with more-integrated aromas after bottle time with more toasted, nutty vanilla notes, as well as silkier and less bitter tannins, compared to the control.
Project description:The aim of this study was to investigate the influence of vine water status on bouquet typicality, revealed after aging, and the perception of three aromatic notes (mint, truffle, and undergrowth) in bottled fine red Bordeaux wines. To address the issue of the role of vine water deficit in the overall quality of fine aged wines, a large set of wines from four Bordeaux appellations were subjected to sensory analysis. As vine water status can be characterized by carbon isotope discrimination (δ13C), this ratio was quantified for each wine studied. Statistical analyses combining δ13C and sensory data highlighted that δ13C-values discriminated effectively between the most- and least-typical wines. In addition, Principal Component Analysis (PCA) revealed correlations between δ13C-values and truffle, undergrowth, and mint aromatic notes, three characteristics of the red Bordeaux wine aging bouquet. These correlations were confirmed to be significant using a Spearman statistical test. This study highlighted for the first time that vine water deficit positively relates to the perception of aging bouquet typicality, as well as the expression of its key aromatic nuances.
Project description:The use of toasted vine shoots (SEGs) as an enological tool is a new practice that seeks to improve wines by differentiating between them and encouraging sustainable wine production. The sensorial impact during bottle aging of wines treated with SEGs is a key factor to consider. This paper studies the influence of SEGs on Tempranillo wines treated with their own SEGs in two different doses (12 and 24 g/L) at two differences moments (during alcoholic fermentation and after malolactic fermentation) throughout 1 year of bottle aging. The results indicate that addition moment is the factor that most affects the evolution of sensorial descriptors. The greatest evolution in the wines was observed during the first 4 months, wherein improved integration of the notes related to addition of SEGs occurred. A reduction in the perception of dryness and bitterness was observed in the treated wines, therefore, SEGs could be considered accelerators to eliminate these initial sensations from wines.
Project description:Wine oxidation and ageing involve many complex chemical pathways and reaction mechanisms. The purpose of this study is to set up new and reproducible accelerated red wine ageing tests and identify chemical oxidation or ageing molecular markers. Three accelerated and reproducible ageing tests were developed: a heat test (60 °C); an enzymatic test (laccase test; a chemical test (hydrogen peroxide test). Depending on the test, oxygen consumption was significantly different. For a young wine (2018), the oxygen consumption rate moved from 2.40 ppm.h-1 for the heat test to 3.33 ppm.h-1 for the enzymatic test and 2.86 ppm.h-1 for the chemical test. Once applied to two other vintages (2010 and 2014) from the same winery, the tests revealed different comportments corresponding to wine natural evolution. High resolution UPLC-MS was performed on forced ageing samples and compared to naturally aged red wines. Specific oxidation or ageing ion markers were found with significant differences between tests, revealing the specificity of each test and different possible molecular pathways involved. The hydrogen peroxide test seems to be closer to natural oxidation with an important decrease in absorbance at 520 nm and similar molecular ion variations for [M+H]+ = 291, 331, 347, 493, 535, 581, 639 Da.
Project description:Background and objectivesPort wine birthmark, also known as port wine stain (PWS) is a skin discoloration characterized by red/purple patches caused by vascular malformation. PWS is typically treated by using lasers to destroy abnormal blood vessels. The laser heating facilitates selective photothermolysis of the vessels and attenuates quickly in the tissue due to high optical scattering. Therefore, residual abnormal capillaries deep in the tissue survive and often lead to the resurgence of PWS. Ultrasound (US) has also been proposed to treat PWS, however, it is nonselective with respect to the vasculature but penetrates deeper into the tissue. We aim to study the feasibility of a hybrid PWS treatment modality combining the advantages of both modalities.Materials and methodsIn this manuscript, we propose a photoacoustic (PA) guided US focusing methodology for PWS treatment which combines the optical contrast-based selectivity with US penetration to focus the US energy onto the vasculature. The PA signals collected by the transducers, when time-reversed, amplified, and transmitted, converge onto the PWS, thus minimally affecting the neighboring tissue. We performed two- and three-dimensional simulations that mimic realistic transducers and medium properties in this proof of concept study.ResultsThe time-reversed PA signals when transmitted from the transducers converged onto the vasculature, as expected, thus reducing the heating of the neighboring tissue. We observed that while the US focus is indeed affected due to experimental factors such as limited-view, large detector separation and finite detection bandwidth, and so forth, the US did focus completely or partially onto the vasculature demonstrating the feasibility of the proposed methodology.ConclusionThe results demonstrate the potential of the proposed methodology for PWS treatment. This treatment method can destroy the deeper capillaries while minimally heating the neighboring tissue, thus reducing the chances of the resurgence of PWS and as well as cosmetic scarring.
Project description:In order to explore the effects of ultrasound on the formation of acetaldehyde and its mechanism in model wine solutions, ultrasound conditions and free radicals were investigated by response surface methodology and electron paramagnetic resonance spectroscopy (EPR), respectively. The results indicate that ultrasound does induce the production of acetaldehyde with the maximum amount under the conditions of ultrasound power density 0.2 W/cm2, 48 min and 32 °C. The hydroxyl radicals and the 1-hydroxyethyl free radicals are the main initiator and precursor for acetaldehyde, respectively. Furthermore, the stronger the 1-hydroxyethyl free radicals captured by EPR, the lower the formation of acetaldehyde. In addition, the content of Fe2+and ethanol also exerted a certain influence on the acetaldehyde formation. In conclusion, ultrasound does promote the production of acetaldehyde in the model wine solutions, which is beneficial for well understanding the mechanism of ultrasound in modifying the wine color and accelerating ageing.
Project description:Aging is an important process for improving wine and brandy quality. In this study, the chemical characterization and sensory properties of spine grape brandies were compared after aging with various species of wood chips, including French oak (FO), American oak (AO), Mongolian oak (MO), Japanese blue oak (JO), chestnut, catalpa, and cherry. The results showed that high color intensity and significant concentrations of tannins and polyphenols were observed in the brandies aged with FO, AO, and chestnut chips. The volatile compounds, such as ethyl decanoate, ethyl 2-methylbutanoate, ethyl octanoate, methyl salicylate, (Z)-2-hexenol, and furfural, contributed to the floral, fruity, and roasted/smoky attributes of the brandies aged with FO, AO, and chestnut chips. The 1-butanol, 1-propanol, phenylethanol, phenylethyl acetate, isoamyl acetate, and linalool contributed to the fruity, honey, and floral attributes of the brandies aged with JO and cherry chips. These findings are extremely useful for the production of differentiated and high-quality spine grape brandies.
Project description:A crucial aspect of viticulture is finally unveiled as the historical dynamics of its agrobiodiversity are described in the Champagne region for the first time. Outline analyses were carried out to compare the morphology of archaeological grape seeds from Troyes and Reims (first c. AD to fifteenth c. AD) with that of a reference collection of modern seeds, including wild vines and traditional grape varieties, believed to be ancient and characteristic of the French vine heritage. This allows us to document the chronological dynamics of the use of the wild Vitis type and of the diversity of the varieties used, based on morphological disparity. After showing the existence of morphological types corresponding to geographical groups, we highlight a geochronological dynamic. Our results show that the wild type is used throughout the series, up to the Middle Ages. In addition, domestic forms, morphologically related to southern varietal groups, are very early involved in the Champagne grape agrodiversity. The groups corresponding to the typical grape varieties of today do not appear until the second millennium. These previously unsuspected dynamics are discussed in light of the social, societal and climatic changes documented for the period.
Project description:Ultrasound is one of the most promising non-thermal an emerging technique in food technology. The objective of the present work was to evaluate the effect of different ultrasonic treatments on the most important wine microbiota (Saccharomyces and non-Saccharomyces yeasts and lactic acid bacteria). Two stages were carried out: the assessment step, where six different ultrasonic treatments (with varying power, time, and pulses) were used on Saccharomyces cerevisiae, Brettanomyces spp., and Lactiplantibacillus plantarum; and the validation step, where two chosen ultrasonic treatments were used on Zigosaccharomyces bailli, Brettanomyces spp., Saccharomyces cerevisiae, Saccharomyces bayanus, Pichia membranifaciens, Schizosaccharomyces pombe, and Hanseniaspora osmophila. The most sensitive microorganism was Brettanomyces spp., and the most resistant was Lactiplantibacillus plantarum. Ultrasonic treatments had varying effects on vitality (delay of growth or maximum OD reduction) and on viability (reduction of microbial growth).