Project description:BackgroundStimulation of phospholipase Cβ (PLCβ) by the activated α-subunit of Gq (Gαq) constitutes a major signaling pathway for cellular regulation, and structural studies have recently revealed the molecular interactions between PLCβ and Gαq. Yet, most of the PLCβ-interacting residues identified on Gαq are not unique to members of the Gαq family. Molecular modeling predicts that the core PLCβ-interacting residues located on the switch regions of Gαq are similarly positioned in Gαz which does not stimulate PLCβ. Using wild-type and constitutively active chimeras constructed between Gαz and Gα14, a member of the Gαq family, we examined if the PLCβ-interacting residues identified in Gαq are indeed essential.ResultsFour chimeras with the core PLCβ-interacting residues composed of Gαz sequences were capable of binding PLCβ2 and stimulating the formation of inositol trisphosphate. Surprisingly, all chimeras with a Gαz N-terminal half failed to functionally associate with PLCβ2, despite the fact that many of them contained the core PLCβ-interacting residues from Gα14. Further analyses revealed that the non-PLCβ2 interacting chimeras were capable of interacting with other effector molecules such as adenylyl cyclase and tetratricopeptide repeat 1, indicating that they could adopt a GTP-bound active conformation.ConclusionCollectively, our study suggests that the previously identified PLCβ-interacting residues are insufficient to ensure productive interaction of Gα14 with PLCβ, while an intact N-terminal half of Gα14 is apparently required for PLCβ interaction.
Project description:Signal-Peptide Peptidase Like-3 (SPPL3) is an intramembrane cleaving aspartyl protease that causes secretion of extracellular domains from type-II transmembrane proteins. Numerous Golgi-localized glycosidases and glucosyltransferases have been identified as physiological SPPL3 substrates. By SPPL3 dependent processing, glycan-transferring enzymes are deactivated inside the cell, as their active site-containing domain is cleaved and secreted. Thus, SPPL3 impacts on glycan patterns of many cellular and secreted proteins and can regulate protein glycosylation. However, the characteristics that make a substrate a favourable candidate for SPPL3-dependent cleavage remain unknown. To gain insights into substrate requirements, we investigated the function of a GxxxG motif located in the transmembrane domain of N-acetylglucosaminyltransferase V (GnTV), a well-known SPPL3 substrate. SPPL3-dependent secretion of the substrate's ectodomain was affected by mutations disrupting the GxxxG motif. Using deuterium/hydrogen exchange and NMR spectroscopy, we studied the effect of these mutations on the helix flexibility of the GnTV transmembrane domain and observed that increased flexibility facilitates SPPL3-dependent shedding and vice versa. This study provides first insights into the characteristics of SPPL3 substrates, combining molecular biology, biochemistry, and biophysical techniques and its results will provide the basis for better understanding the characteristics of SPPL3 substrates with implications for the substrates of other intramembrane proteases.
Project description:BackgroundFluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase-DNA covalent complex as a topoisomerase-fluoroquinolone-DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions. Recent studies have suggested that type IIA topoisomerases use two metal ions, one structural and one catalytic, to carry out the strand breakage reaction.MethodsWe conducted a series of DNA cleavage assays to examine the effects of fluoroquinolones and quinazolinediones on Mg(2+)-, Mn(2+)-, or Ca(2+)-supported DNA cleavage activity of Escherichia coli Topo IV.ResultsIn the absence of any drug, 20-30 mM Mg(2+) was required for the maximum levels of the DNA cleavage activity of Topo IV, whereas approximately 1mM of either Mn(2+) or Ca(2+) was sufficient to support the maximum levels of the DNA cleavage activity of Topo IV. Fluoroquinolones promoted the Topo IV-catalyzed strand breakage reaction at low Mg(2+) concentrations where Topo IV alone could not efficiently cleave DNA.Conclusions and general significanceAt low Mg(2+) concentrations, fluoroquinolones may stimulate the Topo IV-catalyzed strand breakage reaction by promoting Mg(2+) binding to metal binding site B through the structural distortion in DNA. As Mg(2+) concentration increases, fluoroquinolones may inhibit the religation reaction by either stabilizing Mg(2+) at site B or inhibition the binding of Mg(2+) to site A. This study provides a molecular basis of how fluoroquinolones stimulate the Topo IV-catalyzed strand breakage reaction by modulating Mg(2+) binding.
Project description:Single-stranded DNA-binding protein (SSB) and PriA helicase play important roles in bacterial DNA replication restart process. The mechanism by which PriA helicase is bound and stimulated by SSB in Escherichia coli (Ec) has been established, but information on this process in Gram-positive bacteria are limited. We characterized the properties of SSB from Staphylococcus aureus (SaSsbA, a counterpart of EcSSB) and analyzed its interaction with SaPriA. The gel filtration chromatography analysis of purified SaSsbA showed a stable tetramer in solution. The crystal structure of SaSsbA determined at 1.82 Å resolution (PDB entry 5XGT) reveals that the classic oligonucleotide/oligosaccharide-binding folds are formed in the N-terminal DNA-binding domain, but the entire C-terminal domain is disordered. Unlike EcSSB, which can stimulate EcPriA via a physical interaction between EcPriA and the C-terminus of EcSSB (SSB-Ct), SaSsbA does not affect the activity of SaPriA. We also found that SaPriA can be bound by SaSsbA, but not by SaSsbA-Ct. Although no effect was found with SaSsbA, SaPriA can be significantly stimulated by the Gram-negative Klebsiella pneumoniae SSB (KpSSB). In addition, we found that the conserved SSB-Ct binding site of KpPriA (Trp82, Tyr86, Lys370, Arg697, and Gln701) is not present in SaPriA. Arg697 in KpPriA is known to play a critical role in altering the SSB35/SSB65 distribution, but this corresponding residue in SaPriA is Glu767 instead, which has an opposite charge to Arg. SaPriA E767R mutant was constructed and analyzed; however, it still cannot be stimulated by SaSsbA. Finally, we found that the conserved MDFDDDIPF motif in the Gram-negative bacterial SSB is DISDDDLPF in SaSsbA, i.e., F172 in EcSSB and F168 in KpSSB is S161 in SaSsbA, not F. When acting with SaSsbA S161F mutant, the activity of SaPriA was dramatically enhanced elevenfold. Overall, the conserved binding sites, both in EcPriA and EcSSB, are not present in SaPriA and SaSsbA, thereby no stimulation occurs. Our observations through structure-sequence comparison and mutational analyses indicate that the case of EcPriA-EcSSB is not applicable to SaPriA-SaSsbA because of inherent differences among the species.
Project description:BackgroundHolliday junction (HJ) resolution is a critical step during homologous recombination. In Escherichia coli this job is performed by a member of the RNase H/Integrase superfamily called RuvC, whereas in Schizosaccharomyces pombe it has been attributed to the XPF family member Mus81-Eme1. HJ resolution is achieved through the sequential cleavage of two strands of like polarity at or close to the junction crossover point. RuvC functions as a dimer, whereas Mus81-Eme1 is thought to function as a dimer of heterodimers. However, in both cases the multimer contains two catalytic sites, which act independently and sequentially during the resolution reaction. To ensure that both strands are cleaved before the nuclease dissociates from the junction, the rate of second strand cleavage is greatly enhanced compared to that of the first. The enhancement of second strand cleavage has been attributed to the increased flexibility of the nicked HJ, which would facilitate rapid engagement of the second active site and scissile bond. Here we have investigated whether other properties of the nicked HJ are important for enhancing second strand cleavage.Principal findingsA comparison of the efficiency of cleavage of nicked HJs with and without a 5' phosphate at the nick site shows that a 5' phosphate is required for most of the enhancement of second strand cleavage by RuvC. In contrast Mus81-Eme1 cleaves nicked HJs with and without a 5' phosphate with equal efficiency, albeit there are differences in cleavage site selection.ConclusionsOur data show that efficient HJ resolution by RuvC depends on the 5' phosphate revealed by incision of the first strand. This is a hitherto unappreciated factor in promoting accelerated second strand cleavage. However, a 5' phosphate is not a universal requirement since efficient cleavage by Mus81-Eme1 appears to depend solely on the increased junction flexibility that is developed by the first incision.
Project description:Toll/IL-1R resistance (TIR) domain-containing adapter-inducing IFN-? (TRIF) is a Toll-like receptor (TLR) adapter that mediates MyD88-independent induction of type I interferons through activation of IFN regulatory factor 3 and NF?B. We have examined peptides derived from the TRIF TIR domain for ability to inhibit TLR4. In addition to a previously identified BB loop peptide (TF4), a peptide derived from putative helix B of TRIF TIR (TF5) strongly inhibits LPS-induced cytokine and MAPK activation in wild-type cells. TF5 failed to inhibit LPS-induced cytokine and kinase activation in TRIF-deficient immortalized bone-marrow-derived macrophage, but was fully inhibitory in MyD88 knockout cells. TF5 does not block macrophage activation induced by TLR2, TLR3, TLR9, or retinoic acid-inducible gene 1/melanoma differentiation-associated protein 5 agonists. Immunoprecipitation assays demonstrated that TF4 binds to TLR4 but not TRIF-related adaptor molecule (TRAM), whereas TF5 binds to TRAM strongly and TLR4 to a lesser extent. Although TF5 prevented coimmunoprecipitation of TRIF with both TRAM and TLR4, site-directed mutagenesis of the TRIF B helix residues affected TRIF-TRAM coimmunoprecipitation selectively, as these mutations did not block TRIF-TLR4 association. These results suggest that the folded TRIF TIR domain associates with TRAM through the TRIF B helix region, but uses a different region for TRIF-TLR4 association. The B helix peptide TF5, however, can associate with either TRAM or TLR4. In a mouse model of TLR4-driven inflammation, TF5 decreased plasma cytokine levels and protected mice from a lethal LPS challenge. Our data identify TRIF sites that are important for interaction with TLR4 and TRAM, and demonstrate that TF5 is a potent TLR4 inhibitor with significant potential as a candidate therapeutic for human sepsis.
Project description:Many cellular processes such as endosomal vesicle budding, virus budding, and cytokinesis require extensive membrane remodeling by the endosomal sorting complex required for transport III (ESCRT-III). ESCRT-III protein family members form spirals with variable diameters in vitro and in vivo inside tubular membrane structures, which need to be constricted to proceed to membrane fission. Here, we show, using high-speed atomic force microscopy and electron microscopy, that the AAA-type adenosine triphosphatase VPS4 constricts and cleaves ESCRT-III CHMP2A-CHMP3 helical filaments in vitro. Constriction starts asymmetrically and progressively decreases the diameter of CHMP2A-CHMP3 tubular structure, thereby coiling up the CHMP2A-CHMP3 filaments into dome-like end caps. Our results demonstrate that VPS4 actively constricts ESCRT-III filaments and cleaves them before their complete disassembly. We propose that the formation of ESCRT-III dome-like end caps by VPS4 within a membrane neck structure constricts the membrane to set the stage for membrane fission.
Project description:The design of selective matrix metalloproteinase (MMP) inhibitors that also possess favorable solubility properties has proved to be especially challenging. A prior approach using collagen-model templates combined with transition state analogs produced a first generation of triple-helical peptide inhibitors (THPIs) that were effective in vitro against discrete members of the MMP family. These THPI constructs were also highly water-soluble. The present study sought improvements in the first generation THPIs by enhancing thermal stability and selectivity. A THPI selective for MMP-2 and MMP-9 was redesigned to incorporate non-native amino acids (Flp and mep), resulting in an increase of 18 °C in thermal stability. This THPI was effective in vivo in a mouse model of multiple sclerosis, reducing clinical severity and weight loss. Two other THPIs were developed to be more selective within the collagenolytic members of the MMP family. One of these THPIs was serendipitously more effective against MMP-8 than MT1-MMP and was utilized successfully in a mouse model of sepsis. The THPI targeting MMP-8 minimized lung damage, increased production of the anti-inflammatory cytokine IL-10, and vastly improved mouse survival.
Project description:Microglia act as the protective immune cell of the brain. By surveying the tissue to identify and rectify problems, they function to maintain the health of brain cells. The prion protein N-terminal cleavage fragment, N1, has demonstrated neuroprotective activities in vitro and in vivo. This study aimed to elucidate whether N1 could modulate microglial function and, if so, determine the consequences for the surrounding tissue. Using a mixed neuronal lineage and microglia co-culture system, we showed that N1 stimulation changed overall morphology and metabolism, suggesting enhanced cellular viability. Furthermore, N1 induced an increase in Cxcl10 secretion in the co-cultures. Recombinant Cxcl10, administered exogenously, mediated the changes in the mixed neuronal lineage culture morphology and metabolism in the absence of microglia, but no effect of Cxcl10 was observed on microglia cultured on their own. Direct cell-to-cell contact was required for N1 to influence microglia in the co-cultures, and this was linked with restructuring of microglial membrane composition to include a higher GM1 content at interaction sites with surrounding cells. Our findings show that N1 can play a regulatory role in microglial function in the context of an inter-connected network of cells by changing both cellular interaction sites and cytokine secretion.
Project description:Collagenases of the matrix metalloproteinase (MMP) family play major roles in morphogenesis, tissue repair, and human diseases, but how they recognize and cleave the collagen triple helix is not fully understood. Here, we report temperature-dependent binding of a catalytically inactive MMP-1 mutant (E200A) to collagen through the cooperative action of its catalytic and hemopexin domains. Contact between the two molecules was mapped by screening the Collagen Toolkit peptide library and by hydrogen/deuterium exchange. The crystal structure of MMP-1(E200A) bound to a triple-helical collagen peptide revealed extensive interactions of the 115-Å-long triple helix with both MMP-1 domains. An exosite in the hemopexin domain, which binds the leucine 10 residues C-terminal to the scissile bond, is critical for collagenolysis and represents a unique target for inhibitor development. The scissile bond is not correctly positioned for hydrolysis in the crystallized complex. A productive binding mode is readily modeled, without altering the MMP-1 structure or the exosite interactions, by axial rotation of the collagen homotrimer. Interdomain flexing of the enzyme and a localized excursion of the collagen chain closest to the active site, facilitated by thermal loosening of the substrate, may lead to the first transition state of collagenolysis.