Project description:Graphene functionalization with organics is expected to be an important step for the development of graphene-based materials with tailored electronic properties. However, its high chemical inertness makes difficult a controlled and selective covalent functionalization, and most of the works performed up to the date report electrostatic molecular adsorption or unruly functionalization. We show hereafter a mechanism for promoting highly specific covalent bonding of any amino-terminated molecule and a description of the operating processes. We show, by different experimental techniques and theoretical methods, that the excess of charge at carbon dangling-bonds formed on single-atomic vacancies at the graphene surface induces enhanced reactivity towards a selective oxidation of the amino group and subsequent integration of the nitrogen within the graphene network. Remarkably, functionalized surfaces retain the electronic properties of pristine graphene. This study opens the door for development of graphene-based interfaces, as nano-bio-hybrid composites, fabrication of dielectrics, plasmonics or spintronics.
Project description:The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistance temperature probe for in situ monitoring we demonstrate that the hotspot temperature was lowered by ∼28 °C for a chip operating at 1,300 W cm(-2). Thermal resistance probed by pulsed photothermal reflectance measurements demonstrated an improved thermal coupling due to functionalization on the graphene-graphene oxide interface. Three functionalization molecules manifest distinct interfacial thermal transport behaviour, corroborating our atomistic calculations in unveiling the role of molecular chain length and functional groups. Molecular dynamics simulations reveal that the functionalization constrains the cross-plane phonon scattering, which in turn enhances in-plane heat conduction of the bonded graphene film by recovering the long flexural phonon lifetime.
Project description:We present a versatile and simple method using electrochemistry for the exclusive functionalization of the edge of a graphene monolayer with metal nanoparticles or polymeric amino groups. The attachment of metal nanoparticles allows us to exploit surface-enhanced Raman scattering to characterize the chemistry of both the pristine and the functionalized graphene edge. For the pristine patterned graphene edge, we observe the typical edge-related modes, while for the functionalized graphene edge we identify the chemical structure of the functional layer by vibrational fingerprinting. The ability to obtain single selectively functionalized graphene edges routinely on an insulating substrate opens an avenue for exploring the effect of edge chemistry on graphene properties systematically.
Project description:Covalent functionalization of graphene (CFG) has shown attractive advantages in tuning the electronic, mechanical, optical, and thermal properties of graphene. However, facile, large-scale, controllable, and highly efficient CFG remains challenging and often involves highly reactive and volatile compounds, requiring complex control of the reaction conditions. Here, a diazonium-based grafting ink consisting of only two components, i.e., an aryl diazonium salt and the solvent dimethyl sulfoxide (DMSO) is presented. The efficient functionalization is attributed to the combination of the solvation of the diazonium cations by DMSO and n-doping of graphene by DMSO, thereby promoting electron transfer (ET) from graphene to the diazonium cations, resulting in the generation of aryl radicals which subsequently react with the graphene. The grafting density of CFG is controlled by the reaction time and very high levels of functionalization, up to the failing of the Tuinstra-Koenig (T-K) relation, while the functionalization layer remains at monolayer height. The grafting ink, effective for days at room temperature, can be used at ambient conditions and renders the patterning CFG by direct writing as easy as writing on paper. In combination with thermal sample treatment, reversible functionalization is possible by subsequent writing/erasing cycles.
Project description:In this work, a dispersible graphene-based material with a characteristic of aggregation-induced emission (AIE) was prepared by wet chemical reduction of graphene oxide (GO). During the GO reduction process, a conjugated molecule TPEP containing tetraphenylethylene (TPE) and pyrene was employed as a stabilizer because of the π-π interactions and the wrapping effect. The as-prepared rGO-TPEP not only has good dispersion in solution but also processes the AIE feature. Its fluorescence intensity is 2.23 times higher than that of TPEP at the same condition. The unique optical properties and AIE effect enable the rGO-TPEP as a chemical sensor for highly sensitive explosive detection in aggregated state and solid state. In the aggregated state, trace 2,4-dinitrotoluene (DNT) can be detected by the rGO-TPEP even when the concentration is as low as 0.91 ppm, and the quenching constant is as high as 2.47 × 104 M-1.
Project description:Since its discovery, graphene has attracted much attention due to its unique electrical transport properties that can be applied to high-performance field-effect transistors (FETs). However, mounting chemical functionalities onto graphene inevitably involves the breaking of sp2 bonds, resulting in the degradation of the mechanical and electrical properties compared to pristine graphene. Here, we report a new strategy to chemically functionalize graphene for use in FETs without affecting the electrical performance. The key idea is to control the Fermi level of the graphene using the consecutive treatment of gold nanoparticles (AuNPs) and thiol-SAM (self-assembled monolayer) molecules, inducing positive and negative doping effects, respectively, by flipping the electric dipoles between AuNPs and SAMs. Based on this method, we demonstrate a Dirac voltage switcher on a graphene FET using heavy metal ions on functionalized graphene, where the carboxyl functional groups of the mediating SAMs efficiently form complexes with the metal ions and, as a result, the Dirac voltage can be positively shifted by different charge doping on graphene. We believe that the nanoparticle-mediated SAM functionalization of graphene can pave the way to developing high-performance chemical, environmental, and biological sensors that fully utilize the pristine properties of graphene.
Project description:In this work, we report the synthesis of graphene oxide (GO) nanohybrids with starch, fructose, and micro-cellulose molecules by sonication in an aqueous medium at 90 °C and a short reaction time (30 min). The final product was washed with solvents to extract the nanohybrids and separate them from the organic molecules not grafted onto the GO surface. Nanohybrids were chemically characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy and analyzed by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD). These results indicate that the ultrasound energy promoted a chemical reaction between GO and the organic molecules in a short time (30 min). The chemical characterization of these nanohybrids confirms their covalent bond, obtaining a grafting percentage above 40% the weight in these nanohybrids. This hybridization creates nanometric and millimetric nanohybrid particles. In addition, the grafted organic molecules can be crystallized on GO films. Interference in the ultrasound waves of starch hybrids is due to the increase in viscosity, leading to a partial hybridization of GO with starch.
Project description:Efficient and selective methods for covalent derivatization of graphene are needed because they enable tuning of graphene's surface and electronic properties, thus expanding its application potential. However, existing approaches based mainly on chemistry of graphene and graphene oxide achieve only limited level of functionalization due to chemical inertness of the surface and nonselective simultaneous attachment of different functional groups, respectively. Here we present a conceptually different route based on synthesis of cyanographene via the controllable substitution and defluorination of fluorographene. The highly conductive and hydrophilic cyanographene allows exploiting the complex chemistry of -CN groups toward a broad scale of graphene derivatives with very high functionalization degree. The consequent hydrolysis of cyanographene results in graphene acid, a 2D carboxylic acid with pKa of 5.2, showing excellent biocompatibility, conductivity and dispersibility in water and 3D supramolecular assemblies after drying. Further, the carboxyl groups enable simple, tailored and widely accessible 2D chemistry onto graphene, as demonstrated via the covalent conjugation with a diamine, an aminothiol and an aminoalcohol. The developed methodology represents the most controllable, universal and easy to use approach toward a broad set of 2D materials through consequent chemistries on cyanographene and on the prepared carboxy-, amino-, sulphydryl-, and hydroxy- graphenes.
Project description:A controlled, reproducible, gram-scale method is reported for the covalent functionalization of graphene sheets by a one-pot nitrene [2+1] cycloaddition reaction under mild conditions. The reaction between commercially available 2,4,6-trichloro-1,3,5-triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine-functionalized sheets. The different reactivities of the chlorine substituents on the functionalized graphene allow stepwise post-modification by manipulating the temperature. This new method provides unique access to defined bifunctional 2D nanomaterials, as exemplified by chiral surfaces and multifunctional hybrid architectures.
Project description:Organic functionalization of graphene is successfully performed via 1,3-dipolar cycloaddition of azomethine ylide in the liquid phase. The comparison between 1-methyl-2-pyrrolidinone and N,N-dimethylformamide as dispersant solvents, and between sonication and homogenization as dispersion techniques, proves N,N-dimethylformamide and homogenization as the most effective choice. The functionalization of graphene nanosheets and reduced graphene oxide is confirmed using different techniques. Among them, energy-dispersive X-ray spectroscopy allows to map the pyrrolidine ring of the azomethine ylide on the surface of functionalized graphene, while micro-Raman spectroscopy detects new features arising from the functionalization, which are described in agreement with the power spectrum obtained from ab initio molecular dynamics simulation. Moreover, X-ray photoemission spectroscopy of functionalized graphene allows the quantitative elemental analysis and the estimation of the surface coverage, showing a higher degree of functionalization for reduced graphene oxide. This more reactive behavior originates from the localization of partial charges on its surface due to the presence of oxygen defects, as shown by the simulation of the electrostatic features. Functionalization of graphene using 1,3-dipolar cycloaddition is shown to be a significant step towards the controlled synthesis of graphene-based complex structures and devices at the nanoscale.