Project description:BackgroundNano-photothermal therapy (NPTT) has gained wide attention in cancer treatment due to its high efficiency and selective treatment strategy. The biggest challenges in the clinical application are the lack of (i) a reliable platform for mapping the thermal dose and (ii) efficient photothermal agents (PTAs). This study developed a 3D treatment planning for NPTT to reduce the uncertainty of treatment procedures, based on our synthesized nanohybrid.MethodsThis study aimed to develop a three-dimensional finite element method (FEM) model for in vivo NPTT in mice using magneto-plasmonic nanohybrids, which are complex assemblies of superparamagnetic iron oxide nanoparticles and gold nanorods. The model was based on Pennes' bio-heat equation and utilized a geometrically correct mice whole-body. CT26 colon tumor-bearing BALB/c mice were injected with nanohybrids and imaged using MRI (3 Tesla) before and after injection. MR images were segmented, and STereoLithography (STL) files of mice bodies and nanohybrid distribution in the tumor were established to create a realistic geometry for the model. The accuracy of the temperature predictions was validated by using an infrared (IR) camera.ResultsThe photothermal conversion efficiency of the nanohybrids was experimentally determined to be approximately 30%. The intratumoral (IT) injection group showed the highest temperature increase, with a maximum of 17 °C observed at the hottest point on the surface of the tumor-bearing mice for 300 s of laser exposure at a power density of 1.4 W/cm2. Furthermore, the highest level of tissue damage, with a maximum value of Ω = 0.4, was observed in the IT injection group, as determined through a simulation study.ConclusionsOur synthesized nanohybrid shows potential as an effective agent for MRI-guided NPTT. The developed model accurately predicted temperature distributions and tissue damage in the tumor. However, the current temperature validation method, which relies on limited 2D measurements, may be too lenient. Further refinement is necessary to improve validation. Nevertheless, the presented FEM model holds great promise for clinical NPTT treatment planning.
Project description:Novel nanoscale bioconjugates combining unique plasmonic photothermal properties of gold nanoparticles (AuNPs) with targeted delivery using cell-specific DNA aptamers have a tremendous potential for medical diagnostics and therapy of many cell-based diseases. In this study, we demonstrate the high anti-cancer activity of aptamer-conjugated, 37-nm spherical gold nanoparticles toward Ehrlich carcinoma in tumor-bearing mice after photothermal treatment. The synthetic anti-tumor aptamers bring the nanoparticles precisely to the desired cells and selectively eliminate cancer cells after the subsequent laser treatment. To prove tumor eradication, we used positron emission tomography (PET) utilizing radioactive glucose and computer tomography, followed by histological analysis of cancer tissue. Three injections of aptamer-conjugated AuNPs and 5 min of laser irradiations are enough to make the tumor undetectable by PET. Histological analysis proves PET results and shows lower damage of healthy tissue in addition to a higher treatment efficiency and selectivity of the gold nanoparticles functionalized with aptamers in comparison to control experiments using free unconjugated nanoparticles.
Project description:Bifunctional nanohybrids possessing both plasmonic and magnetic functionalities are of great interest for biomedical applications owing to their capability for simultaneous therapy and diagnostics. Herein, we fabricate a core-shell structured plasmonic-magnetic nanocomposite system that can serve as a dual-functional agent due to its combined photothermal therapeutic and magnetic resonance imaging (MRI) functions. The photothermal activity of the hybrid is attributed to its plasmonic Au core, which is capable of absorbing near-infrared (NIR) light and converting it into heat. Meanwhile, the magnetic MgFe2O4 shell exerts its ability to act as a MRI contrast agent. Our in vivo studies using tumor-bearing mice demonstrated the nanohybrids' excellent photothermal and MRI properties. As a photothermal therapeutic agent, the nanohybrids were able to dramatically shrink solid tumors in mice through NIR-induced hyperthermia. As T 2-weighted MRI contrast agents, the nanohybrids were found capable of substantially reducing the MRI signal intensity of the tumor region at 10 min postinjection. With their dual plasmonic-magnetic functionality, these Au@MgFe2O4 nanohybrids hold great promise not only in the biomedical field but also in the areas of catalysis and optical sensing.
Project description:Abstract Nanoparticle-assisted laser-induced photothermal therapy (PTT) is a promising method for cancer treatment; yet, visualization of nanoparticle uptake and photothermal response remain a critical challenge. Here, we report a magnetic resonance imaging-active nanomatryoshka (Gd2O3-NM), a multilayered (Au core/Gd2O3 shell/Au shell) sub-100 nm nanoparticle capable of combining T1 MRI contrast with PTT. This bifunctional nanoparticle demonstrates an r1 of 1.28 × 108 mM–1 s–1, an MRI contrast enhancement per nanoparticle sufficient for T1 imaging in addition to tumor ablation. Gd2O3-NM also shows excellent stability in an acidic environment, retaining 99% of the internal Gd(3). This report details the synthesis and characterization of a promising system for combined theranostic nanoparticle tracking and PTT.
Project description:In most drug delivery systems the clinician does not have control over the location of drug delivery after the therapeutic has been administered. As the location of the tumor mass is often known in many patients, a therapy system which enables the clinician to play an active role in nanomedicine localization would provide an advantage. Here, we show a new approach wherein a laser can be used to tag tumor tissue and enhance the delivery of targeted polymer therapeutics. Plasmonic gold nanorods are delivered to the cancerous tissue and heated by a laser to promote a targetable, hyperthermic response. Concurrent administration of a heat shock targeted polymer therapeutic thereby enhances site specific delivery.
Project description:Lung cancer is a particularly difficult form of cancer to diagnose and treat, due largely to the inaccessibility of tumours and the limited available treatment options. The development of plasmonic gold nanoparticles has led to their potential use in a large range of disciplines, and they have shown promise for applications in this area. The ability to functionalise these nanoparticles to target to specific cancer types, when combined with minimally invasive therapies such as photothermal therapy, could improve long-term outcomes for lung cancer patients. Conventionally, continuous wave lasers are used to generate bulk heating enhanced by gold nanorods that have accumulated in the target region. However, there are potential negative side-effects of heat-induced cell death, such as the risk of damage to healthy tissue due to heat conducting to the surrounding environment, and the development of heat and drug resistance. In this study, the use of pulsed lasers for photothermal therapy was investigated and compared with continuous wave lasers for gold nanorods with a surface plasmon resonance at 850 nm, which were functionalised with anti-EGFR antibodies. Photothermal therapy was performed with both laser systems, on lung cancer cells (A549) in vitro populations incubated with untargeted and targeted nanorods. It was shown that the combination of pulse wave laser illumination of targeted nanoparticles produced a reduction of 93 % ± 13 % in the cell viability compared with control exposures, which demonstrates a possible application for minimally invasive therapies for lung cancer.
Project description:BackgroundPhotothermal therapy (PTT) has been extensively investigated as a tumor-localizing therapeutic modality for neoplastic disorders. However, the hyperthermia effect of PTT is greatly restricted by the thermoresistance of tumor cells. Particularly, the compensatory expression of heat shock protein 90 (HSP90) has been found to significantly accelerate the thermal tolerance of tumor cells. Thus, a combination of HSP90 inhibitor and photothermal photosensitizer is expected to significantly enhance antitumor efficacy of PTT through hyperthermia sensitization. However, it remains challenging to precisely co-deliver two or more drugs into tumors.MethodsA carrier-free co-delivery nanoassembly of gambogic acid (GA, a HSP90 inhibitor) and DiR is ingeniously fabricated based on a facile and precise molecular co-assembly technique. The assembly mechanisms, photothermal conversion efficiency, laser-triggered drug release, cellular uptake, synergistic cytotoxicity of the nanoassembly are investigated in vitro. Furthermore, the pharmacokinetics, biodistribution and self-enhanced PTT efficacy were explored in vivo.ResultsThe nanoassembly presents multiple advantages throughout the whole drug delivery process, including carrier-free fabrication with good reproducibility, high drug co-loading efficiency with convenient dose adjustment, synchronous co-delivery of DiR and GA with long systemic circulation, as well as self-tracing tumor accumulation with efficient photothermal conversion. As expected, HSP90 inhibition-augmented PTT is observed in a 4T1 tumor BALB/c mice xenograft model.ConclusionOur study provides a novel and facile dual-drug co-assembly strategy for self-sensitized cancer therapy.
Project description:Promoting metallic magnesium (Mg)-based implants to treat bone diseases in clinics, such as osteosarcoma and bacterial infection, remains a challenging topic. Herein, an iron hydroxide-based composite coating with a two-stage nanosheet-like structure was fabricated on Mg alloy, and this was followed by a thermal reduction treatment to break some of the surface Fe-OH bonds. The coating demonstrated three positive changes in properties due to the defects. First, the removal of -OH made the coating superhydrophobic, and it had self-cleaning and antifouling properties. This is beneficial for keeping the implants clean and for anti-corrosion before implantation into the human body. Furthermore, the superhydrophobicity could be removed by immersing the implant in a 75% ethanol solution, to further facilitate biological action during service. Second, the color of the coating changed from yellow to brown-black, leading to an increase in the light absorption, which resulted in an excellent photothermal effect. Third, the defects increased the Fe2+ content in the coating and highly improved peroxidase activity. Thus, the defect coating exhibited synergistic photothermal/chemodynamic therapeutic effects for bacteria and tumors. Moreover, the coating substantially enhanced the anti-corrosion and biocompatibility of the Mg alloys. Therefore, this study offers a novel multi-functional Mg-based implant for osteosarcoma therapy.
Project description:Tumor associated macrophages (TAM) are key pathogenic factors in neoplastic diseases. They are known to have plasticity and can polarize into two opposing phenotypes, including the tumoricidal M1 and the protumoral M2 phenotypes with high prevalence of M2-phentoypes in patients with poor prognosis. Strategies for targeting M2-TAM may consequently increase the efficacy of therapeutic strategies for cancer treatment. Gold nanorod-assisted plasmonic photothermal therapy (PPTT) has emerged as a promising treatment for cancer but the effects of macrophage polarization parameters in the performance of this new treatment modality is still unknown. Herein, human monocytic THP-1 cells were polarized into two opposite phenotypic macrophages (M1-TAM and M2-TAM) and their response to PPTT was examined. M2-TAM exhibits a three-fold increase in AuNP uptake compared to M1-TAM. Laser irradiation results in selective killing of pro-tumoral M2-TAM after treatment with AuNPs with limited effects on anti-tumoral M1-TAM. A positive correlation between the expression of CD206 marker and the AuNP uptake may indicate the role of CD206 in facilitating AuNP uptake. Our findings also suggest that the differences in AuNP avidity and uptake between the M1-TAM and M2-TAM phenotypes may be the rationale behind the effectiveness of PPTT in the treatment of solid tumors.
Project description:In plasmonic photothermal therapy (PPTT), illuminated gold nanoparticles are locally heated to produce selective damage in cells. While PPTT is expected to strongly depend on the cell line, available data are sparse and critical parameters remain unclear. To elucidate this pivotal aspect, we present a systematic study of diseased and nondiseased cells from different tissues to evaluate cytotoxicity, uptake of gold nanorods (AuNRs), and viability after PPTT. We identified differences in uptake and toxicity between cell types, linking AuNR concentrations to toxicity. Furthermore, the cell death mechanism is shown to depend on the intensity of the irradiated light and hence the temperature increase. Importantly, the data also underline the need to monitor cell death at different time points. Our work contributes to the definition of systematic protocols with appropriate controls to fully comprehend the effects of PPTT and build meaningful and reproducible data sets, key to translate PPTT to clinical settings.