Project description:PurposeOsteoarthritis (OA) stands as the most prevalent joint disorder. Mitochondrial dysfunction has been linked to the pathogenesis of OA. The main goal of this study is to uncover the pivotal role of mitochondria in the mechanisms driving OA development.Materials and methodsWe acquired seven bulk RNA-seq datasets from the Gene Expression Omnibus (GEO) database and examined the expression levels of differentially expressed genes related to mitochondria in OA. We utilized single-sample gene set enrichment analysis (ssGSEA), gene set enrichment analysis (GSEA), and weighted gene co-expression network analysis (WGCNA) analyses to explore the functional mechanisms associated with these genes. Seven machine learning algorithms were utilized to identify hub mitochondria-related genes and develop a predictive model. Further analyses included pathway enrichment, immune infiltration, gene-disease relationships, and mRNA-miRNA network construction based on these hub mitochondria-related genes. genome-wide association studies (GWAS) analysis was performed using the Gene Atlas database. GSEA, gene set variation analysis (GSVA), protein pathway analysis, and WGCNA were employed to investigate relevant pathways in subtypes. The Harmonizome database was employed to analyze the expression of hub mitochondria-related genes across various human tissues. Single-cell data analysis was conducted to examine patterns of gene expression distribution and pseudo-temporal changes. Additionally, The real-time polymerase chain reaction (RT-PCR) was used to validate the expression of these hub mitochondria-related genes.ResultsIn OA, the mitochondria-related pathway was significantly activated. Nine hub mitochondria-related genes (SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH, and PDK4) were identified. They constructed predictive models with good ability to predict OA. These genes are primarily associated with macrophages. Unsupervised consensus clustering identified two mitochondria-associated isoforms that are primarily associated with metabolism. Single-cell analysis showed that they were all expressed in single cells and varied with cell differentiation. RT-PCR showed that they were all significantly expressed in OA.ConclusionSIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH, and PDK4 are potential mitochondrial target genes for studying OA. The classification of mitochondria-associated isoforms could help to personalize treatment for OA patients.
Project description:(1) Background: Osteoarthritis (OA) is a heterogeneous disorder, and subgroup classification of OA remains elusive. The aim of our study was to identify endotypes of hip OA and investigate the altered pathways in the different endotypes. (2) Methods: Metabolomic profiling and genome-wide genotyping were performed on fasting blood. Transcriptomic profiling was performed on RNA extracted from cartilage samples. Machine learning methods were used to identify endotypes of hip OA. Pathway analysis was used to identify the altered pathways between hip endotypes and controls. GWAS was performed on each of the identified metabolites. Transcriptomic data was used to examine the expression levels of identified genes in cartilage. (3) Results: 180 hip OA patients and 120 OA-free controls were classified into three clusters based on metabolomic data. The combination of arginine, ornithine, and the average value of 7 lysophosphatidylcholines had an area under the curve (AUC) of 0.97 (95% CI: 0.96-0.99) to discriminate hip OA from controls, and the combination of γ-aminobutyric acid, spermine, aconitic acid, and succinic acid had an AUC of 0.96 (95% CI: 0.94-0.99) to distinguish two hip OA endotypes. GWAS identified 236 SNPs to be associated with identified metabolites at GWAS significance level. Pro-inflammatory cytokine levels were significantly different between two endotypes (all p < 0.05). (4) Conclusions: Hip OA could be classified into two distinct molecular endotypes. The primary differences between the two endotypes involve changes in pro-inflammatory factors and energy metabolism.
Project description:BackgroundThe demographic shift towards an older population presents significant challenges for kidney transplantation (KTx), particularly due to the vulnerability of aged donor kidneys to ischemic damage, delayed graft function, and reduced graft survival. KTx rejection poses a significant threat to allograft function and longevity of the kidney graft. The relationship between senescence and rejection remains elusive and controversial.MethodsGene Expression Omnibus (GEO) provided microarray and single-cell RNA sequencing datasets. After integrating Senescence-Related Genes (SRGs) from multiple established databases, differential expression analysis, weighted gene co-expression network analysis (WGCNA), and machine learning algorithms were applied to identify predictive SRGs (pSRGs). A cluster analysis of rejection samples was conducted using the consensus clustering algorithm. Subsequently, we utilized multiple machine learning methods (RF, SVM, XGB, GLM and LASSO) based on pSRGs to develop the optimal Acute Rejection (AR) diagnostic model and long-term graft survival predictive signatures. Finally, we validated the role of pSRGs and senescence in kidney rejection through the single-cell landscape.ResultsThirteen pSRGs were identified, correlating with rejection. Two rejection clusters were divided (Cluster C1 and C2). GSVA analysis of two clusters underscored a positive correlation between senescence, KTx rejection occurrence and worse graft survival. A non-invasive diagnostic model (AUC = 0.975) and a prognostic model (1- Year AUC = 0.881; 2- Year AUC = 0.880; 3- Year AUC = 0.883) for graft survival were developed, demonstrating significant predictive capabilities to early detect acute rejection and long-term graft outcomes. Single-cell sequencing analysis provided a detailed cellular-level landscape of rejection, supporting the conclusions drawn from above.ConclusionOur comprehensive analysis underscores the pivotal role of senescence in KTx rejection, highlighting the potential of SRGs as biomarkers for diagnosing rejection and predicting graft survival, which may enhance personalized treatment strategies and improve transplant outcomes.
Project description:BackgroundOvarian cancer (OC) is a globally prevalent malignancy with significant morbidity and mortality, yet its heterogeneity poses challenges in treatment and prognosis. Recognizing the crucial role of the tumor microenvironment (TME) in OC progression, this study leverages integrative multi-omics and machine learning to uncover TME-associated prognostic biomarkers, paving the way for more personalized therapeutic interventions.MethodsEmploying a rigorous multi-omics approach, this study analyzed single-cell RNA sequencing (scRNA-seq) data from OC and normal tissue samples, including high-grade serous OC (HGSOC) from the Gene Expression Omnibus (GEO: GSE184880) and The Cancer Genome Atlas (TCGA) OC cohort, utilizing the Seurat package to annotate 700 TME-related genes. A prognostic model was developed using the least absolute shrinkage and selection operator (LASSO) regression and independently validated against similarly composed HGSOC datasets. Comprehensive gene expression and immune cell infiltration analyses were conducted, employing advanced algorithms like xCell to delineate the immune landscape of HGSOC.ResultsOur investigation unveiled distinctive immune cell infiltration patterns and gene expression profiles within the TME of HGSOC. Notably, the prevalence of exhausted CD8+ T cells in high-risk patient samples emerged as a critical finding, underscoring the dualistic nature of the immune response in OC. The developed prognostic model, incorporating immune cell markers, exhibited robust predictive accuracy for patient outcomes, showing significant correlations with immunotherapy responses and drug sensitivities.ConclusionsThis study presents a groundbreaking exploration of the OC TME, offering vital insights into its molecular intricacies. By systematically deciphering the TME-associated gene signatures, the research illuminates the potential of these biomarkers in refining patient prognosis and guiding treatment strategies. Our findings underscore the necessity for personalized medicine in OC treatment, potentially enhancing patient survival rates and quality of life. This study marks a significant stride in understanding and combatting the complexities of OC.
Project description:Progress in sequencing technologies and clinical experiments has revolutionized immunotherapy on solid and hematologic malignancies. However, the benefits of immunotherapy are limited to specific patient subsets, posing challenges for broader application. To improve its effectiveness, identifying biomarkers that can predict patient response is crucial. Machine learning (ML) play a pivotal role in harnessing multi-omic cancer datasets and unlocking new insights into immunotherapy. This review provides an overview of cutting-edge ML models applied in omics data for immunotherapy analysis, including immunotherapy response prediction and immunotherapy-relevant tumor microenvironment identification. We elucidate how ML leverages diverse data types to identify significant biomarkers, enhance our understanding of immunotherapy mechanisms, and optimize decision-making process. Additionally, we discuss current limitations and challenges of ML in this rapidly evolving field. Finally, we outline future directions aimed at overcoming these barriers and improving the efficiency of ML in immunotherapy research.
Project description:Background: Lung adenocarcinoma is a common malignant tumor that ranks second in the world and has a high mortality rate. G protein-coupled receptors (GPCRs) have been reported to play an important role in cancer; however, G protein-coupled receptor-associated features have not been adequately investigated. Methods: In this study, GPCR-related genes were screened at single-cell and bulk transcriptome levels based on AUcell, single-sample gene set enrichment analysis (ssGSEA) and weighted gene co-expression network (WGCNA) analysis. And a new machine learning framework containing 10 machine learning algorithms and their multiple combinations was used to construct a consensus G protein-coupled receptor-related signature (GPCRRS). GPCRRS was validated in the training set and external validation set. We constructed GPCRRS-integrated nomogram clinical prognosis prediction tools. Multi-omics analyses included genomics, single-cell transcriptomics, and bulk transcriptomics to gain a more comprehensive understanding of prognostic features. We assessed the response of risk subgroups to immunotherapy and screened for personalized drugs targeting specific risk subgroups. Finally, the expression of key GPCRRS genes was verified by RT-qPCR. Results: In this study, we identified 10 GPCR-associated genes that were significantly associated with the prognosis of lung adenocarcinoma by single-cell transcriptome and bulk transcriptome. Univariate and multivariate showed that the survival rate was higher in low risk than in high risk, which also suggested that the model was an independent prognostic factor for LUAD. In addition, we observed significant differences in biological function, mutational landscape, and immune cell infiltration in the tumor microenvironment between high and low risk groups. Notably, immunotherapy was also relevant in the high and low risk groups. In addition, potential drugs targeting specific risk subgroups were identified. Conclusion: In this study, we constructed and validated a lung adenocarcinoma G protein-coupled receptor-related signature, which has an important role in predicting the prognosis of lung adenocarcinoma and the effect of immunotherapy. It is hypothesized that LDHA, GPX3 and DOCK4 are new potential targets for lung adenocarcinoma, which can achieve breakthroughs in prognosis prediction, targeted prevention and treatment of lung adenocarcinoma and provide important guidance for anti-tumor.
Project description:Cellular senescence is a stress response with broad pathophysiological implications. Senotherapies can induce senescence to treat cancer or eliminate senescent cells to ameliorate ageing and age-related pathologies. However, the success of senotherapies is limited by the lack of reliable ways to identify senescence. Here, we use nuclear morphology features of senescent cells to devise machine-learning classifiers that accurately predict senescence induced by diverse stressors in different cell types and tissues. As a proof-of-principle, we use these senescence classifiers to characterise senolytics and to screen for drugs that selectively induce senescence in cancer cells but not normal cells. Moreover, a tissue senescence score served to assess the efficacy of senolytic drugs and identified senescence in mouse models of liver cancer initiation, ageing, and fibrosis, and in patients with fatty liver disease. Thus, senescence classifiers can help to detect pathophysiological senescence and to discover and validate potential senotherapies.
Project description:The big-data analysis of complex data associated with maize genomes accelerates genetic research and improves agronomic traits. As a result, efforts have increased to integrate diverse datasets and extract meaning from these measurements. Machine learning models are a powerful tool for gaining knowledge from large and complex datasets. However, these models must be trained on high-quality features to succeed. Currently, there are no solutions to host maize multi-omics datasets with end-to-end solutions for evaluating and linking features to target gene annotations. Our work presents the Maize Feature Store (MFS), a versatile application that combines features built on complex data to facilitate exploration, modeling and analysis. Feature stores allow researchers to rapidly deploy machine learning applications by managing and providing access to frequently used features. We populated the MFS for the maize reference genome with over 14 000 gene-based features based on published genomic, transcriptomic, epigenomic, variomic and proteomics datasets. Using the MFS, we created an accurate pan-genome classification model with an AUC-ROC score of 0.87. The MFS is publicly available through the maize genetics and genomics database. Database URL https://mfs.maizegdb.org/.