Project description:Visualization of the reaction coordinate undertaken by glycosyltransferases has remained elusive but is critical for understanding this important class of enzyme. Using substrates and substrate mimics, we describe structural snapshots of all species along the kinetic pathway for human O-linked ?-N-acetylglucosamine transferase (O-GlcNAc transferase), an intracellular enzyme that catalyzes installation of a dynamic post-translational modification. The structures reveal key features of the mechanism and show that substrate participation is important during catalysis.
Project description:Yersinia pestis, the causative agent of bubonic plague, is able to survive in both extracellular and intracellular environments within the human host, although its intracellular survival within macrophages is poorly understood. A novel Y. pestis three-gene rip (required for intracellular proliferation) operon, and in particular ripA, has been shown to be essential for survival and replication in interferon γ-induced macrophages. RipA was previously characterized as a putative butyryl-CoA transferase proposed to yield butyrate, a known anti-inflammatory shown to lower macrophage-produced NO levels. RipA belongs to the family I CoA transferases, which share structural homology, a conserved catalytic glutamate which forms a covalent CoA-thioester intermediate and a flexible loop adjacent to the active site known as the G(V/I)G loop. Here, functional and structural analyses of several RipA mutants are presented in an effort to dissect the CoA transferase mechanism of RipA. In particular, E61V, M31G and F60M RipA mutants show increased butyryl-CoA transferase activities when compared with wild-type RipA. Furthermore, the X-ray crystal structures of E61V, M31G and F60M RipA mutants, when compared with the wild-type RipA structure, reveal important conformational changes orchestrated by a conserved acyl-group binding-pocket phenylalanine, Phe85, and the G(V/I)G loop. Binary structures of M31G RipA and F60M RipA with two distinct CoA substrate conformations are also presented. Taken together, these data provide CoA transferase reaction snapshots of an open apo RipA, a closed glutamyl-anhydride intermediate and an open CoA-thioester intermediate. Furthermore, biochemical analyses support essential roles for both the catalytic glutamate and the flexible G(V/I)G loop along the reaction pathway, although further research is required to fully understand the function of the acyl-group binding pocket in substrate specificity.
Project description:Structural analogues of nucleosides, nucleoside analogues (NA), are used in the treatment of cancer and viral infections. Antiviral NAs inhibit replication of the viral genome, whereas anticancer NAs inhibit cellular DNA replication and repair. NAs are inactive prodrugs that are dependent on intracellular phosphorylation to their pharmacologically active triphosphate form. The deoxyribonucleoside kinases (dNK) and ribonucleoside kinases (rNK) catalyze the first phosphorylation step, converting deoxyribonucleosides and ribonucleosides to their corresponding monophosphate form. The dNKs have been studied intensively, whereas the rNKs have not been as thoroughly investigated. This overview is focused on the substrate specificity, tissue distribution, and subcellular location of the mammalian dNKs and rNKs and their role in the activation of NAs.
Project description:Information about the intracellular concentration of dNTPs and NTPs is important for studies of the mechanisms of DNA replication and repair, but the low concentration of dNTPs and their chemical similarity to NTPs present a challenge for their measurement. Here, we describe a new rapid and sensitive method utilizing hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the simultaneous determination of dNTPs and NTPs in biological samples. The developed method showed linearity (R2 > 0.99) in wide concentration ranges and could accurately quantify dNTPs and NTPs at low pmol levels. The intra-day and inter-day precision were below 13%, and the relative recovery was between 92% and 108%. In comparison with other chromatographic methods, the current method has shorter analysis times and simpler sample pre-treatment steps, and it utilizes an ion-pair-free mobile phase that enhances mass-spectrometric detection. Using this method, we determined dNTP and NTP concentrations in actively dividing and quiescent mouse fibroblasts.
Project description:The transition path sampling method previously applied in our group to the reaction catalyzed by lactate dehydrogenase was used to generate a transition path ensemble for this reaction. Based on analysis of the reactive trajectories generated, important residues behind the active site were implicated in a compressional motion that brought the donor-acceptor atoms of the hydride closer together. In addition, residues behind the active site were implicated in a relaxational motion, locking the substrate in product formation. Although this suggested that the compression-relaxation motions of these residues were important to catalysis, it remained unproven. In this work, we used committor distribution analysis to show that these motions are integral components of the reaction coordinate.
Project description:Protein synthesis is catalyzed in the peptidyl transferase center (PTC), located in the large (50S) subunit of the ribosome. No high-resolution structure of the intact ribosome has contained a complete active site including both A- and P-site tRNAs. In addition, although past structures of the 50S subunit have found no ordered proteins at the PTC, biochemical evidence suggests that specific proteins are capable of interacting with the 3' ends of tRNA ligands. Here we present structures, at 3.6-A and 3.5-A resolution respectively, of the 70S ribosome in complex with A- and P-site tRNAs that mimic pre- and post-peptidyl-transfer states. These structures demonstrate that the PTC is very similar between the 50S subunit and the intact ribosome. They also reveal interactions between the ribosomal proteins L16 and L27 and the tRNA substrates, helping to elucidate the role of these proteins in peptidyl transfer.
Project description:The twister RNA is a recently discovered nucleolytic ribozyme that is present in both bacteria and eukarya. While its biological role remains unclear, crystal structure analyses and biochemical approaches have revealed critical features of its catalytic mechanism. Here, we set out to explore dynamic aspects of twister RNA folding along the cleavage reaction coordinate. To do so, we have employed both bulk and single-molecule fluorescence resonance energy transfer (FRET) methods to investigate a set of twister RNAs with labels strategically positioned at communicating segments. The data reveal that folding of the central pseudoknot (T1), the most crucial structural determinant to promote cleavage, exhibits reversible opening and closing dynamics at physiological Mg2+ concentration. Uncoupled folding, in which T1 formation precedes structuring for closing of stem P1, was confirmed using pre-steady-state three-color smFRET experiments initiated by Mg2+ injection. This finding suggests that the folding path of twister RNA requires proper orientation of the substrate prior to T1 closure such that the U5-A6 cleavage site becomes embraced to achieve its cleavage competent conformation. We also find that the cleaved 3'-fragment retains its compacted pseudoknot fold, despite the absence of the phylogenetically conserved stem P1, rationalizing the poor turnover efficiency of the twister ribozyme.
Project description:How evolution has affected enzyme function is a topic of great interest in the field of biophysical chemistry. Evolutionary changes from Escherichia coli dihydrofolate reductase (ecDHFR) to human dihydrofolate reductase (hsDHFR) have resulted in increased catalytic efficiency and an altered dynamic landscape in the human enzyme. Here, we show that a subpicosecond protein motion is dynamically coupled to hydride transfer catalyzed by hsDHFR but not ecDHFR. This motion propagates through residues that correspond to mutational events along the evolutionary path from ecDHFR to hsDHFR. We observe an increase in the variability of the transition states, reactive conformations, and times of barrier crossing in the human system. In the hsDHFR active site, we detect structural changes that have enabled the coupling of fast protein dynamics to the reaction coordinate. These results indicate a shift in the DHFR family to a form of catalysis that incorporates rapid protein dynamics and a concomitant shift to a more flexible path through reactive phase space.
Project description:Cellular reprogramming, the conversion of one cell type to another, induces global changes in gene expression involving thousands of genes, and understanding how cells globally alter their gene expression profile during reprogramming is an ongoing problem. Here we reanalyze time-course data on cellular reprogramming from differentiated cell types to induced pluripotent stem cells (iPSCs) and show that gene expression dynamics during reprogramming follow a simple 1D reaction coordinate. This reaction coordinate is independent of both the time it takes to reach the iPSC state as well as the details of the experimental protocol used. Using Monte-Carlo simulations, we show that such a reaction coordinate emerges from epigenetic landscape models where cellular reprogramming is viewed as a 'barrier-crossing' process between cell fates. Overall, our analysis and model suggest that gene expression dynamics during reprogramming follow a canonical trajectory consistent with the idea of an 'optimal path' in gene expression space for reprogramming.
Project description:Sulfur incorporation in the biosynthesis of ergothioneine, a histidine thiol derivative, differs from other well-characterized transsulfurations. A combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation and a subsequent pyridoxal 5'-phosphate (PLP)-mediated C-S lyase reaction leads to the net transfer of a sulfur atom from a cysteine to a histidine. In this study, we structurally and mechanistically characterized a PLP-dependent C-S lyase Egt2, which mediates the sulfoxide C-S bond cleavage in ergothioneine biosynthesis. A cation-π interaction between substrate and enzyme accounts for Egt2's preference of sulfoxide over thioether as a substrate. Using mutagenesis and structural biology, we captured three distinct states of the Egt2 C-S lyase reaction cycle, including a labile sulfenic intermediate captured in Egt2 crystals. Chemical trapping and high-resolution mass spectrometry were used to confirm the involvement of the sulfenic acid intermediate in Egt2 catalysis.