Project description:The paper is a study of risk assessment posed by trees in selected urban woodlands (urban forests) of Warsaw. Two groups of trees were analysed and compared: exhibiting signs of maturity and ageing (hollow-bearing trees with open or hidden cavities and/or caries) and with no signs of decay. 373 individual trees growing near routes frequently or continuously used for recreational purposes were examined using Roloff's vitality classification, and tree risk assessment method, complemented by instrumental studies: a resistance resistograph, pulling tests, and sonic tomography (SoT). The collected data was analysed using the Chi-square test. The results indicate that it is not possible to conclude unequivocally that the presence of hollows in aged trees significantly increases the risk of falling. According to the safety factor results from the SoT and pulling tests, no correlation was demonstrated between the presence of hollow trees and an increase in risk class. The highest proportion of hollow trees (89.42%) was in the low risk group for trunk fracture and uprooting. The results also indicate the coherence of the diagnostic methods to be necessary for providing sufficient information to assess the statics and, ultimately, as our study showed, the protection of hollow trees.
Project description:Ectomycorrhizal (ECM) fungi play fundamental roles in host plant growth and terrestrial ecosystems. Cedrus deodara is cultivated in several regions in China, has high ecological, economic and medicinal value, for its afforestation and providing timber and wood oil. Here, we investigated ECM colonization status of four urban C. deodara forests in Nantong, East China. We also characterized soil spore banks by conducting bioassay experiments using soils collected from these forests. In total, we identified 19 ECM fungal species, of which 13 species were found in mature forests and 9 species were identified in bioassay experiments, with only 3 species shared. Soil pH and available P content had significant effects on species occurrence in both mature trees and bioassay seedlings on local scales. ECM communities clearly (A = 0.391, p = 0.006) separated mature forests from spore banks. Thelephoracae was the richest family we detected associated with C. deodara, while Trichophaea sp. was the most dominant in mature forests, and Wilcoxina sp. was dominant in spore banks. ECM richness affected the growth of bioassay seedlings, especially after inoculation with 2 ECM species, promoting root growth, significantly (F = 3.028, p = 0.050), but it had no effects on shoots (F = 1.778, p = 0.177). No effect of inoculation rate was found on seedlings growth. To conserve this important tree species, the ECM fungi that are associated with it should be considered.
Project description:There is ample evidence that urban trees benefit the physical, mental, and social health of urban residents. The environmental justice hypothesis posits that environmental amenities are inequitably low in poor and minority communities, and predicts these communities experience fewer urban environmental benefits. Some previous research has found that urban forest cover is inequitably distributed by race, though other studies have found no relationship or negative inequity. These conflicting results and the single-city nature of the current literature suggest a need for a research synthesis. Using a systematic literature search and meta-analytic techniques, we examined the relationship between urban forest cover and race. First, we estimated the average (unconditional) relationship between urban forest cover and race across studies (studies = 40; effect sizes = 388). We find evidence of significant race-based inequity in urban forest cover. Second, we included characteristics of the original studies and study sites in meta-regressions to illuminate drivers of variation of urban forest cover between studies. Our meta-regressions reveal that the relationship varies across racial groups and by study methodology. Models reveal significant inequity on public land and that environmental and social characteristics of cities help explain variation across studies. As tree planting and other urban forestry programs proliferate, urban forestry professionals are encouraged to consider the equity consequences of urban forestry activities, particularly on public land.
Project description:Urban trees provide substantial public health and public environmental benefits. However, scholarly works suggest that urban trees may be unequally distributed among poor and minority urban communities, meaning that these communities are potentially being deprived of public environmental benefits, a form of environmental injustice. The evidence of this problem is not uniform however, and evidence of inequity varies in size and significance across studies. This variation in results suggests the need for a research synthesis and meta-analysis. We employed a systematic literature search to identify original studies which examined the relationship between urban forest cover and income (n=61) and coded each effect size (n=332). We used meta-analytic techniques to estimate the average (unconditional) relationship between urban forest cover and income and to estimate the impact that methodological choices, measurement, publication characteristics, and study site characteristics had on the magnitude of that relationship. We leveraged variation in study methodology to evaluate the extent to which results were sensitive to methodological choices often debated in the geographic and environmental justice literature but not yet evaluated in environmental amenities research. We found evidence of income-based inequity in urban forest cover (unconditional mean effect size = 0.098; s.e. = .017) that was robust across most measurement and methodological strategies in original studies and results did not differ systematically with study site characteristics. Studies that controlled for spatial autocorrelation, a violation of independent errors, found evidence of substantially less urban forest inequity; future research in this area should test and correct for spatial autocorrelation.
Project description:Large-scale urban growth has modified the hydrological cycle of our cities, causing greater and faster runoff. Urban forests (UF), i.e. the stock of trees and shrubs, can substantially reduce runoff; still, how climate, tree functional types influence rainfall partitioning into uptake and runoff is mostly unknown. We analyzed 92 published studies to investigate: interception (I), transpiration (T), soil infiltration (IR) and the subsequent reduction in runoff. Trees showed the best runoff protection compared to other land uses. Within functional types, conifers provided better protection on an annual scale through higher I and T but broadleaved species provided better IR. Regarding tree traits, leaf area index (LAI) showed a positive influence for both I and T. For every unit of LAI increment, additional 5% rainfall partition through T (3%) and I (2%) can be predicted. Overall, runoff was significantly lower under mixed species stands. Increase of conifer stock to 30% in climate zones with significant winter precipitation and to 20% in areas of no dry season can reduce runoff to an additional 4%. The study presented an overview of UF potential to partition rainfall, which might help to select species and land uses in different climate zones for better storm-water management.
Project description:Urban forests as nature-based solutions (UF-NBS) are important tools for climate change adaptation and sustainable development. However, achieving both effective and sustainable UF-NBS solutions requires diverse knowledge. This includes knowledge on UF-NBS implementation, on the assessment of their environmental impacts in diverse spatial contexts, and on their management for the long-term safeguarding of delivered benefits. A successful integration of such bodies of knowledge demands a systematic understanding of UF-NBS. To achieve such an understanding, this paper presents a conceptual UF-NBS model obtained through a semantic, trait-based modelling approach. This conceptual model is subsequently implemented as an extendible, re-usable and interoperable ontology. In so doing, a formal, trait-based vocabulary on UF-NBS is created, that allows expressing spatial, morphological, physical, functional, and institutional UF-NBS properties for their typification and a subsequent integration of further knowledge and data. Thereby, ways forward are opened for a more systematic UF-NBS impact assessment, management, and decision-making.
Project description:Urban forests play a crucial role in the overall health and stability of urban ecosystems. Soil microorganisms are vital to the functioning of urban forest ecosystems as they facilitate material cycling and contribute to environmental stability. This study utilized high-throughput sequencing technology to examine the structural characteristics of bacterial and fungal communities in the bulk soil of six different forest stands: Phyllostachys pubescens (ZL), Metasequoia glyptostroboides (SSL), Cornus officinalis (SZY), mixed broad-leaved shrub forest (ZKG), mixed pine and cypress forest (SBL), and mixed broad-leaved tree forest (ZKQ). Soil samples were collected from each forest stand, including the corners, center, and edges of each plot, and a combined sample was created from the first five samples. The results revealed that among the bacterial communities, ZKG exhibited the highest alpha diversity in spring, while ZL demonstrated the highest alpha diversity in both summer and autumn. Proteobacteria was the most abundant bacterial phylum in all six forest stand soils. The dominant fungal phylum across the six forest stands was identified as Ascomycota. Notably, the microbial community diversity of SBL bulk soil exhibited significant seasonal changes. Although ZL exhibited lower bacterial community diversity in spring, its fungal community diversity was the highest. The bulk soil microbial diversity of ZL and SSL surpassed that of the other forest stands, suggesting their importance in maintaining the stability of the urban forest ecosystem in the Zhuyu Bay Scenic Area. Furthermore, the diversity of the bulk soil microbial communities was higher in all six stands during spring compared to summer and autumn. Overall, this study provides valuable insights into the seasonal variations of bulk soil microbial communities in urban forests and identifies dominant tree species, offering guidance for tree species' selection and preservation in urban forest management.
Project description:Urbanization is increasing worldwide and is regarded a major threat to biodiversity in forests. As consequences of intensive human use, the vegetation structure of naturally growing urban forests and their amount of deadwood can be reduced. Deadwood is an essential resource for various saproxylic insects and fungi. We assessed the effects of urbanization and forest characteristics on saproxylic insects and fungi. We exposed standardized bundles consisting of each three freshly cut beech and oak branches in 25 forests along a rural-urban gradient in Basel (Switzerland). After an exposure of 8 months, we extracted the saproxylic insects for 10 months using an emergence trap for each bundle. We used drilling chips from each branch to determine fungal operational taxonomic units (OTUs). In all, 193,534 insect individuals emerged from the experimental bundles. Our study showed that the abundance of total saproxylic insects, bark beetles, longhorn beetles, total flies, moths, and ichneumonid wasps decreased with increasing degree of urbanization, but not their species richness. However, the taxonomic composition of all insect groups combined was altered by wood moisture of branches and that of saproxylic beetles was influenced by the degree of urbanization. Unexpectedly, forest size and local forest characteristics had a minor effect on saproxylic insects. ITS (internal transcribed spacer of rDNA) analysis with fungal specific primers revealed a total of 97 fungal OTUs on the bundles. The number of total fungal OTUs decreased with increasing degree of urbanization and was affected by the volume of naturally occurring fine woody debris. The composition of fungal OTUs was altered by the degree of urbanization and pH of the branch wood. As a consequence of the altered compositions of saproxylics, the association between total saproxylic insects and fungi changed along the rural-urban gradient. Our study shows that urbanization can negatively impact saproxylic insects and fungi.