Project description:Biochar and bioorganic fertilizers (BOF) that are used in agriculture can, both directly and indirectly, impact rhizosphere soil microorganisms. However, changes to the halophyte rhizosphere bacterial community after applying biochar and BOF to saline−alkali soil have not been thoroughly described. This study has investigated the bacterial communities of halophytes in saline−alkali soil through the addition of different biochar and BOF formulas using Illumina-based sequencing of the 16S rRNA gene fragment. B_BOF (biochar and BOF combined application) had the best effect, either by promoting the plant growth or by improving the physical and chemical properties of the soil. The concentration of the rhizosphere bacterial communities correlated with the changes in soil organic matter (OM) and organic carbon (OC). Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria accounted for >80% of the total bacteria in each treatment. In addition, the abundance of Micromonospora was much higher in response to B_BOF than to the other treatments. BOF, with or without biochar, significantly influenced the bacterial community composition in the saline−alkali soil. The OC, OM, total nitrogen, and the available phosphorus had significant effects on the bacterial structure of this soil. The complex correlation of the bacterial communities between CK and B_BOF was higher compared to that between CK and FB or between CK and BOF. These findings suggested that the plant growth, the soil characteristics, and the diversity or community composition of the rhizosphere bacteria in saline−alkali soil were significantly influenced by B_BOF, followed by BOF, and then biochar; fine biochar had a stronger effect than medium or coarse biochar. This study provides an insight into the complex microbial compositions that emerge in response to biochar and BOF.
Project description:The area of saline soils accounts for 8% of the earth's surface, making these soils an important terrestrial carbon sink. Soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), soil enzyme activity, and soil bacterial abundance and biodiversity were measured in four successive coastal tidal flat ecosystems representing: bare saline soil (BS), Suaeda glauca land (SL), Imperata cylindrica grassland (IG), and Jerusalem artichoke field (JF). A decrease in soil salt content resulted in increased SOC content. With vegetation succession, MBC and DOC concentrations showed a positive trend, and activities of soil urease, catalase, invertase and alkaline phosphatase increased. A next-generation, Illumina-based sequencing approach showed that Proteobacteria, Acidobacteria, Chloroflexi, Bacteroidetes, Gemmatimonadetes, Actinobacteria, Nitrospirae and Planctomycetes were the dominant bacterial communities (a total of 597 taxa were detected, and 27 genera showed significant differences among the vegetation communities). Bacterial diversity at two soil depths was enhanced with the succession of vegetation ecosystems, with the increases in operational taxonomic units (OTUs) and the Shannon and Chao1 indices ranked in the order: JF > IG > SL > BS. The SOC and C/N were the most determinant factors influencing diversity of bacterial communities in the succession ecosystems.
Project description:As the main economic crop cultivated in the Yellow River Delta, winter jujube contains various nutrients. However, soil salinization and fungal diseases have affected the yield and quality of winter jujube. In order to use plant growth-promoting rhizobacteria (PGPR) to reduce these damages, the antagonistic bacteria CZ-6 isolated from the rhizosphere of wheat in saline soil was selected for experiment. Gene sequencing analysis identified CZ-6 as Bacillus amyloliquefaciens. In order to understand the salt tolerant and disease-resistant effects of CZ-6 strain, determination of related indicators of salt tolerance, pathogen antagonistic tests, and anti-fungal mechanism analyses was carried out. A pot experiment was conducted to evaluate the effect of CZ-6 inoculation on the rhizosphere microbial community of winter jujube. The salt tolerance test showed that CZ-6 strain can survive in a medium with a NaCl concentration of 10% and produces indole acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase. Studies on the inhibition mechanism of pathogenic fungi show that CZ-6 can secrete cellulase, protease, and xylanase. Gas chromatography-mass spectrometry (GC-MS) analysis showed that CZ-6 can release volatile organic compounds (VOCs), including 2-heptanone and 2-nonanone. In addition, the strain can colonize the rhizosphere and migrate to the roots, stems, and leaves of winter jujube, which is essential for plant growth or defense against pathogens. Illumina MiSeq sequencing data indicated that, compared to the control, the abundance of salt-tolerant bacteria Tausonia in the CZ-6 strain treatment group was significantly increased, while the richness of Chaetomium and Gibberella pathogens was significantly reduced. Our research shows that CZ-6 has the potential as a biological control agent in saline soil. Plant damage and economic losses caused by pathogenic fungi and salt stress are expected to be alleviated by the addition of salt-tolerant antagonistic bacteria.
Project description:The rhizosphere microbiota plays a critical and crucial role in plant health and growth, assisting plants in resisting adverse stresses, including soil salinity. Plastic film mulching is an important method to adjust soil properties and improve crop yield, especially in saline-alkali soil. However, it remains unclear whether and to what extent the association between these improvements and rhizosphere microbiota exists. Here, from a field survey and a greenhouse mesocosm experiment, we found that mulching plastic films on saline-alkali soil can promote the growth of soybeans in the field. Results of the greenhouse experiment showed that soybeans grew better in unsterilized saline-alkali soil than in sterilized saline-alkali soil under plastic film mulching. By detecting the variations in soil properties and analyzing the high-throughput sequencing data, we found that with the effect of film mulching, soil moisture content was effectively maintained, soil salinity was obviously reduced, and rhizosphere bacterial and fungal communities were significantly changed. Ulteriorly, correlation analysis methods were applied. The optimization of soil properties ameliorated the survival conditions of soil microbes and promoted the increase in relative abundance of potential beneficial microorganisms, contributing to the growth of soybeans. Furthermore, the classification of potential key rhizosphere microbial OTUs were identified. In summary, our study suggests the important influence of soil properties as drivers on the alteration of rhizosphere microbial communities and indicates the important role of rhizosphere microbiota in promoting plant performance in saline-alkali soil under plastic film mulching.
Project description:Leymus chinensis (L. chinensis) is the dominant plant in the eastern margins of the Eurasian temperate grasslands. It is a very robust species, exhibiting good saline-alkali resistance and stabilizing soil. In this study, 67 soil samples and L. chinensis were collected in western Jilin province, China. The contents of N, P, K, S, Mn, Fe, Zn, Cu and Na were measured, revealing that the growth of L. chinensis was mainly restricted by N based on the stoichiometric N: P ratios of plant. Furthermore, path analysis indicated that N was significantly correlated with K, S, Cu, and Zn. Imbalances in the homeostasis of these four elements may thus constrain N. The homeostasis index of Cu (HCu) in sites with 100%-70% of vegetation cover was only 0.79, it was classified as a sensitive element. However, K, S and Zn, whose concentrations in L. chinensis were significantly related to those of N, exhibited no homeostatic characteristics. These results suggest that when seeking to treat saline-alkali stress, it is important to add fertilizers containing K, S, and Zn to avoid growth limitation. Na+, an ion associated with high soil alkalinity, exhibited weak homeostasis in L. chinensis even in sites with only 40%-10% of vegetation cover. When soil Na exceeded 16000 mg/kg, the homeostasis mechanism of L. chinensis appeared to be overwhelmed, resulting in rapid and probably harmful accumulation of Na. Proper control of N content can alleviate the toxicity of Na stress in L. chinensis and enhance its Na tolerance. Together, these results suggest that combined fertilization with N, K, S, Zn and Cu should be applied to improve grasslands growth. The results of this study can provide a reference basis for sustainable grassland management.
Project description:Salt stress, especially saline-alkali stress, has seriously negative effect on citrus production. Ziyang xiangcheng (Citrus junos Sieb.) (Cj) has been reported as a saline-alkali stress and iron deficiency tolerant citrus rootstock. However, the molecular mechanism of its saline-alkali stress tolerance is still not clear. Two citrus rootstocks and one navel orange scion, Cj, Poncirus trifoliate (Poncirus trifoliata (L.) Raf.) (Pt) and ‘Lane Late’ navel orange (Citrus sinensis (L.) Osb.) (LL), were used in this study. The grafted materials Cj+LL and Pt+LL grown in calcareous soil were used to identify genes and pathways responsive to saline-alkali stress using RNA-seq. The seedlings of Cj and Pt grown in the solutions with different gradient pH value were used to perform a supplement experiment. Comprehensively analyzing the data of RNA-seq, physiology and biochemistry, agronomic traits and mineral elements of Cj+LL, Pt+LL, Cj and Pt, several candidate pathways and genes were identified to be highly regulated under saline-alkali stress. Here, we propose citrate is important for the tolerance to iron deficiency and the jasmonate (JA) biosynthesis and signal transduction pathway may play a crucial role in tolerance to saline-alkali stress in citrus by interacting with other plant hormones, calcium signaling, ROS scavenging system and lignin biosynthesis.