Project description:The seed microbial community constitutes an initial inoculum for plant microbiota assembly. Still, the persistence of seed microbiota when seeds encounter soil during plant emergence and early growth is barely documented. We characterized the encounter event of seed and soil microbiota and how it structured seedling bacterial and fungal communities by using amplicon sequencing. We performed eight contrasting encounter events to identify drivers influencing seedling microbiota assembly. To do so, four contrasting seed lots of two Brassica napus genotypes were sown in two soils whose microbial diversity levels were manipulated by serial dilution and recolonization. Seedling root and stem microbiota were influenced by soil but not by initial seed microbiota composition or by plant genotype. A strong selection on the seed and soil communities occurred during microbiota assembly, with only 8% to 32% of soil taxa and 0.8% to 1.4% of seed-borne taxa colonizing seedlings. The recruitment of seedling microbiota came mainly from soil (35% to 72% of diversity) and not from seeds (0.3% to 15%). Soil microbiota transmission success was higher for the bacterial community than for the fungal community. Interestingly, seedling microbiota was primarily composed of initially rare taxa (from seed, soil, or unknown origin) and intermediate-abundance soil taxa. IMPORTANCE Seed microbiota can have a crucial role for crop installation by modulating dormancy, germination, seedling development, and recruitment of plant symbionts. Little knowledge is available on the fraction of the plant microbiota that is acquired through seeds. We characterize the encounter between seed and soil communities and how they colonize the seedling together. Transmission success and seedling community assemblage can be influenced by the variation of initial microbial pools, i.e., plant genotype and cropping year for seeds and diversity level for soils. Despite a supposed resident advantage of the seed microbiota, we show that transmission success is in favor of the soil microbiota. Our results also suggest that successful plant-microbiome engineering based on native seed or soil microbiota must include rare taxa.
Project description:Seed burial in the sediment is critical for successful seedling establishment in seagrasses because it protects from predation and dispersal into unsuitable sites, and it may enhance germination by exposing the seeds to suitable germination stimuli. However, relatively little is known about the fate of buried seeds and their ability to emerge from greater depths. The goal of this study was to determine seed survival in the sediment, seedling emergence success and initial seedling biomass of Zostera marina in relation to burial depth and to evaluate if large seeds, having larger energy reserves, are more tolerant to burial than small seeds. Seeds from a perennial Z. marina population were buried at 7 different sediment depths (0.1-8 cm), and seeds sorted by size (large and small) were buried at depths of 2, 4 and 6 cm in outdoor mesocosms. Total seedling emergence after 2 months was significantly affected by seed burial depth, with maximum values in the top 2 cm of the sediment (48.1-56.7% of planted seeds), and a marked decline below 4 cm depth to only 5% seedling emergence at the deepest burial depth of 8 cm. Moreover, seeds had shorter time to emergence from shallow compared to deep burial depths. At all burial depths, a small fraction of seeds (<10%) died after germination but before emerging, and 15-30% remained viable after 6 months. Seed mortality was the major limitation to seedling recruitment from the deeper burial depths. The effect of seed size on seedling emergence success and time was not clear, but heavier seeds displayed greater longevity and gave rise to seedlings of significantly higher biomass, indicating that the mobilization of metabolic reserves may be important during initial seedling development.
Project description:Hemp seed (Cannabis sativa L.) contain large amounts of nutrients, e.g. protein, dietary fiber, minerals, and unsaturated fatty acids, which make them a good fortifying component in food production. The aim of the present study was to determine the effect of hemp addition on the physicochemical properties, cooking quality, texture parameters and sensory properties of durum wheat pasta. The samples were fortified with 5-40% of commercially available hemp flour or 2.5-10% of hemp cake obtained from hemp seed oil pressing. Our study showed that the addition of hemp seed raw materials led to an increase in the protein, total dietary fiber (TDF), ash and fat content in the pasta samples. Due to its lower granulation and higher nutritional value, hemp flour was found to be a better raw material for the fortification of pasta than hemp cake. Pasta enriched with hemp flour at the level of 30-40% contains 19.53-28.87% d.m. of protein and 17.02-21.49% d.m. of TDF and according to the EU, a definition can be described as a high-protein and high-fiber products. All enriched pasta samples were also characterized by safe Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) content, and their sensory properties were accepted by consumers.
Project description:Adding propagules (source) to a degraded site (recipient) is a common way of manipulating secondary succession to restore diversity and services formerly provided by forests. However, heretofore no study has considered the effect of "successional distance" between source and recipient site. Four sites in the Shilin karst area of SW China were treated as different states along a secondary successional sere: grass, shrub, young secondary forest, and primary forest. Ten 1 m ×1m soil quadrats in the grass, shrub and young forest sites were replaced with 10 cm deep soil sources from corresponding later successional stage(s) in January 2009. Woody plant seed germination was monitored in the first year and seedling survival was monitored until the end of the second year. At the end of 2010, 2097 seeds of woody plants belonging to 45 taxa had germinated, and 3.9% of the seedlings and 7.8% of the species survived. Germination of most species was sensitive to ambient light (red, far-red, R:FR ratios, photosynthetically active radiation). Soil source and recipient site had a significant effect on the total number of seeds and number of species that germinated, and on the percentage of seedlings that survived through the end of the second year. Closer successional stages between recipient site and soil source had higher seed germination and seedling-survival percentages. However, a transition threshold exists in the young forest state, where seeds can germinate but not survive the second year. Our results, although based on an unreplicated chronosequence, suggest that successional distance between soil sources and recipient sites affect forest recruitment and restoration in degraded karst of SW China.
Project description:BackgroundThe repetitive content of the genome, once considered to be "junk DNA", is in fact an essential component of genomic architecture and evolution. In this study, we used the genomes of three varieties of Cannabis sativa, three varieties of Humulus lupulus and one genotype of Morus notabilis to explore their repetitive content using a graph-based clustering method, designed to explore and compare repeat content in genomes that have not been fully assembled.ResultsThe repetitive content in the C. sativa genome is mainly composed of the retrotransposons LTR/Copia and LTR/Gypsy (14% and 14.8%, respectively), ribosomal DNA (2%), and low-complexity sequences (29%). We observed a recent copy number expansion in some transposable element families. Simple repeats and low complexity regions of the genome show higher intra and inter species variation.ConclusionsAs with other sequenced genomes, the repetitive content of C. sativa's genome exhibits a wide range of evolutionary patterns. Some repeat types have patterns of diversity consistent with expansions followed by losses in copy number, while others may have expanded more slowly and reached a steady state. Still, other repetitive sequences, particularly ribosomal DNA (rDNA), show signs of concerted evolution playing a major role in homogenizing sequence variation.
Project description:Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars. Bacterial communities of the endorhiza showed significant cultivar-specificity. When controlling cultivar and soil type the microbial community structure was significantly different between plant cultivars, soil types, and between the endorhiza, rhizosphere and soil. The influence of soil type, plant cultivar and sample type differentiation on the microbial community structure provides support for a previously published two-tier selection model, whereby community composition across sample types is determined mainly by soil type, while community structure within endorhiza samples is determined mainly by host cultivar.
Project description:Some economically important crop species are dioecious, producing pollen and ovules on distinct, unisexual, individuals. On-the-spot diagnosis of sex is important to breeders and farmers for crop improvement and maximizing yield, yet diagnostic tools at the seedling stage are understudied and lack a scientific basis. Understanding sexual dimorphism in juvenile plants may provide key ecological, evolutionary and economic insights into dioecious plant species in addition to improving the process of crop cultivation. To address this gap in the literature, we asked: can we reliably differentiate males, females, and co-sexual individuals based on seedling morphology in Cannabis sativa, and do the traits used to distinguish sex at this stage vary between genotypes? To answer these questions, we collected data on phenotypic traits of 112 C. sativa plants (50 female, 52 male, 10 co-sexuals) from two hemp cultivars (CFX-1, CFX-2) during the second week of vegetative growth and used ANOVAs to compare morphology among sexes. We found males grew significantly longer hypocotyls than females by week 2, but this difference depended on the cultivar investigated. Preliminary evidence suggests that co-sexual plants may be distinguished from male and female plants using short hypocotyl length and seedling height, although this relationship requires more study since sample sizes of co-sexual plants were small. In one of the cultivars, two-week old male plants tend to produce longer hypocotyls than other plants, which may help to identify these plants prior to anthesis. We call for increased research effort on co-sexual plants, given their heavy economic cost in industrial contexts and rare mention in the literature. Our preliminary data suggests that short hypocotyl length may be an indicator of co-sexuality. These results are the first steps towards developing diagnostic tools for predicting sex using vegetative morphology in dioecious species and understanding how sexual dimorphism influences phenotype preceding sexual maturity.
Project description:The application of nanomaterials (NMs) in agriculture has become a global concern in recent years. However, studies on their effects on plants are still limited. Here, we conducted a seed germination experiment for 5 days and a hydroponics experiment for 14 days to study the effects of silicon dioxide NMs(nSiO2) and silicon carbide NMs(nSiC) (0,10, 50, 200 mg/L) on rice (Oryza sativa L.). Bulk SiO2 (bSiO2) and sodium silicate (Na2SiO3) were used as controls. The results showed that nSiO2 and nSiC increased the shoot length (11-37%, 6-25%) and root length (17-87%, 59-207%) of germinating seeds, respectively, compared with the control. Similarly, inter-root exposure to nSiO2, bSiO2, and nSiC improved the activity of aboveground catalase (10-55%, 31-34%, and 13-51%) and increased the content of trace elements magnesium, copper, and zinc, thus promoting the photosynthesis of rice. However, Na2SiO3 at a concentration of 200 mg/L reduced the aboveground and root biomass of rice by 27-51% and 4-17%, respectively. This may be because excess silicon not only inhibited the activity of root antioxidant enzymes but also disrupted the balance of mineral elements. This finding provides a new basis for the effect of silica-based NMs promotion on seed germination and rice growth.
Project description:Hemp (Cannabis sativa L.) is a widely researched industrial crop with a variety of applications in the pharmaceutical, nutraceutical, food, cosmetic, textile, and materials industries. Although many of these applications are related to its chemical composition, the chemical diversity of the hemp metabolome has not been explored in detail and new metabolites with unknown properties are likely to be discovered. In the current study, we explored the chemical diversity of the hemp seed metabolome through an untargeted metabolomic study of 52 germplasm accessions to 1) identify new metabolites and 2) link the presence of biologically important molecules to specific accessions on which to focus on in future studies. Multivariate analysis of mass spectral data demonstrated large variability of the polar chemistry profile between accessions. Five main groups were annotated based on their similar metabolic fingerprints. The investigation also led to the discovery of a new compound and four structural analogues, belonging to a previously unknown chemical class in hemp seeds: cinnamic acid glycosyl sulphates. Although variability in the fatty acid profiles was not as marked as the polar components, some accessions had a higher yield of fatty acids, and variation in the ratio of linoleic acid to α-linolenic acid was also observed, with some varieties closer to 3:1 (reported as optimal for human nutrition). We found that that cinnamic acid amides and lignanamides, the main chemical classes of bioactive metabolites in hemp seed, were more concentrated in the Spanish accession Kongo Hanf (CAN58) and the French accession CAN37, while the Italian cultivar Eletta Campana (CAN48) demonstrated the greatest yield of fatty acids. Our results indicate that the high variability of bioactive and novel metabolites across the studied hemp seed accessions may influence claims associated with their commercialization and inform breeding programs in cultivar development.
Project description:Globally, seagrass beds have been recognized as critical yet declining coastal habitats. To mitigate seagrass losses, seagrass restorations have been conducted in worldwide over the past two decades. Seed utilization is considered to be an important approach in seagrass restoration efforts. In this study, we investigated the effects of salinity and temperature on seed germination, seedling establishment, and seedling growth of eelgrass Zostera marina L. (Swan Lake, northern China). We initially tested the effects of salinity (0, 5, 10, 15, 20, 25, 30, 35, and 40 ppt) and water temperature (5, 10, 15, and 20 °C) on seed germination to identify optimal levels. To identify levels of salinity that could potentially limit survival and growth, and, consequently, the spatial distribution of seedlings in temperate estuaries, we then examined the effect of freshwater and other salinity levels (10, 20, and 30 ppt) on seedling growth and establishment to confirm suitable conditions for seedling development. Finally, we examined the effect of transferring germinated seeds from freshwater or low salinity levels (1, 5, and 15 ppt) to natural seawater (32 ppt) on seedling establishment rate (SER) at 15 °C. In our research, we found that: (1) Mature seeds had a considerably lower moisture content than immature seeds; therefore, moisture content may be a potential indicator of Z. marina seed maturity; (2) Seed germination significantly increased at low salinity (p < 0.001) and high temperature (p < 0.001). Salinity had a much stronger influence on seed germination than temperature. Maximum seed germination (88.67 ± 5.77%) was recorded in freshwater at 15 °C; (3) Freshwater and low salinity levels (< 20 ppt) increased germination but had a strong negative effect on seedling morphology (number of leaves per seedling reduced from 2 to 0, and maximum seedling leaf length reduced from 4.48 to 0 cm) and growth (seedling biomass reduced by 46.15-66.67% and maximum seedling length reduced by 21.16-69.50%). However, Z. marina performed almost equally well at salinities of 20 and 30 ppt. Very few germinated seeds completed leaf differentiation and seedling establishment in freshwater or at low salinity, implying that freshwater and low salinity may potentially limit the distribution of this species in coastal and estuarine waters. Therefore, the optimum salinity for Z. marina seedling establishment and colonization appears to be above 20 ppt in natural beds; (4) Seeds germinated in freshwater or at low salinity levels could be transferred to natural seawater to accomplish seedling establishment and colonization. This may be the optimal method for the adoption of seed utilization in seagrass restoration. We also identified seven stages of seed germination and seedling metamorphosis in order to characterize growth and developmental characteristics. Our results may serve as useful information for Z. marina habitat establishment and restoration programs.