Project description:Gut microbiota exerts a fundamental role in human health and increased evidence supports the beneficial role of probiotic microorganisms in the maintenance of intestinal health. Enterococcus durans LAB18S was previously isolated from soft cheese and showed some desirable in vitro probiotic properties, for that reason its genome was sequenced and evaluated for genes that can be relevant for probiotic activity and are involved in selenium metabolism. Genome sequencing was performed using the Illumina MiSeq System. A variety of genes potentially associated with probiotic properties, including adhesion capability, viability at low pH, bile salt resistance, antimicrobial activity, and utilization of prebiotic fructooligosaccharides (FOS) were identified. The strain showed tolerance to acid pH and bile salts, exhibited antimicrobial activity and thrived on prebiotic oligosaccharides. Six genes involved in selenium metabolism were predicted. Analysis of the SECIS element showed twelve known selenoprotein candidates. E. durans LAB18S was the only food isolate showing absence of plasmids, virulence and antimicrobial resistance genes, when compared with other 30 E. durans genomes. The results of this study provide evidence supporting the potential of E. durans LAB18S as alternative for probiotic formulations.
Project description:Enterococcus faecium is a multifaceted bacterial species. It is part of the natural human microbiota, it grows in a variety of traditional foods, and emerging multiresistant clones are a leading cause of nosocomial infections. Here, we present draft genomes of five E. faecium isolates originating from traditional Montenegrin brine cheeses.
Project description:The purpose of this study was to evaluate the probiotic properties of Enterococcus strains isolated from traditional naturally fermented cream in China. Four Enterococcus isolates showed high cholesterol removal ability in media were identified as Enterococcus durans (KLDS 6.0930 and 6.0933) and Enterococcus faecalis (KLDS 6.0934 and 6.0935) by 16S rRNA and pheS gene sequences, respectively, and selected for further evaluation. In order to assess the probiotic potential and safety of these strains, the property of four Enterococcus strains were examined, including acid and bile tolerance, adherence to Caco-2 cells and antibiotics susceptibility. All four strains showed potential cholesterol assimilation, de-conjugation of bile salts and/or cholesterol degradation to remove cholesterol in vitro. In addition, the potential effect of E. durans KLDS 6.0930 on serum cholesterol levels was evaluated in Sprague-Dawley rats. After 4 weeks administration, compared with rats fed a high-cholesterol diet without lactic acid bacteria supplementation, there was a significant (P < 0.05) decrease in the total cholesterol and low-density lipoprotein cholesterol levels in the serum of rats treated with KLDS 6.0930. Furthermore, total bile acid level in the feces was significantly (P < 0.05) increased after KLDS 6.0930 administration. These observations suggested that the strain E. durans KLDS 6.0930 may be used in the future as a good candidate for lowering human serum cholesterol levels.
Project description:Enterococcus faecalis OB15 is a probiotic strain that was isolated from rigouta, a popular traditional Tunisian fermented cheese. We report here the draft genome sequence of this strain, consisting of 2,912,159 bp, with an average G+C content of 37.49%.
Project description:The aim of this study was to isolate Enterococcus faecium from raw milk samples, to characterize its antimicrobial metabolites, and to evaluate its viability in a probiotic Minas Frescal cheese. For this, antagonist activity against Listeria monocytogenes, safety aspects and biochemical, genotypic, and probiotic characteristics of the isolates were evaluated. Minas Frescal cheese was manufactured with the isolate that showed the best characteristics in vitro, and its viability in the product was evaluated. It was observed that of the 478 lactic acid bacteria isolates, only isolate E297 presented antagonist activity, genes encoding for enterocin production and absence of virulence factors. Besides that, E297 presented probiotic characteristics in vitro, and maintained its viability (8.09 log CFU mL-1) for 14 days of cold storage, when it was added to cheese. Therefore, isolate E297 can be considered a promising microorganism for the manufacture of probiotic foods, especially Minas Frescal cheese.
Project description:The nutritional challenge faced by the monogastric animals due to the chelation effects of phytic acid, fuel the research on bioprospecting of probiotics for phytase production. Pediococcus acidilactici SMVDUDB2 isolated from Kalarei, exhibited extracellular phytase activity of 5.583 U/mL after statistical optimization of fermentation conditions viz. peptone (1.27%); temperature (37 °C); pH (6.26) and maltose (1.43%). The phytase enzyme possessed optimum pH and temperature of 5.5 and 37 °C, respectively and was thermostable at 60 °C. The enzyme was purified 6.42 fold with a specific activity of 245.12 U/mg with hydrophobic interaction chromatography. The purified enzyme had Km and Vmax values of 0.385 mM and 4.965 μmol/min respectively, with sodium phytate as substrate. The strain depicted more than 80% survival rate at low pH (pH 2.0, 3.0), high bile salt concentration (0.3 and 0.5%), after gastrointestinal transit, highest hydrophobicity affinity with ethyl acetate (33.33 ± 0%), autoaggregation (77.68 ± 0.68%) as well as coaggregation (73.57 ± 0.47%) with Staphylococcus aureus (MTCC 3160). The strain exhibited antimicrobial activity against Bacillus subtilis (MTCC 121), Mycobacterium smegmatis (MTCC 994), Staphylococcus aureus (MTCC 3160), Proteus vulgaris (MTCC 426), Escherichia coli (MTCC 1652) and Lactobacillus rhamnosus (MTCC 1408). The amount of exopolysaccharide produced by the strain was 2 g/L. This strain having the capability of phytate degradation and possessing probiotic traits could find application in food and feed sectors.
Project description:This study focused on optimizing the fermentation-based production of Exopolysaccharides (EPS) from Enterococcus faecium F58 initially isolated from traditional Moroccan Jben, a fresh goat cheese. Using the central composite design, yeast extract, MnSO4, and time affect EPS concentration. The highest experimental and predicted EPS production yields were 2.46 g/L ± 0.38 and 2.86 g/L, respectively. Optimal concentrations of yeast extract (4.46 g/L) and MnSO4 (0.011 g/L) were identified after 26 h at 30 °C. Characterization of EPS was conducted using SEM with EDX, XRD, and FTIR analyses. These tests revealed a specific morphology and an amorphous structure. Additionally, thermogravimetric analysis indicated adequate EPS stability up to 200 °C with anti-adhesion properties against different pathogens. This study offers valuable insights into the optimized production of EPS from Enterococcus faecium F58, which exhibits significant structural and functional properties for various applications in the food and biotechnology industries.Supplementary informationThe online version contains supplementary material available at 10.1007/s10068-023-01424-9.
Project description:Intake of probiotic cheese improves the intestinal health of humans and animals. However, metabolic changes in the intestines of dogs in response to the ingestion of probiotic cheese have not been evaluated. Thus, we aimed to determine the metabolic changes in healthy beagle dogs fed queso blanco cheese with added Lactobacillus reuteri KACC 92293 and Bifidobacterium longum KACC 91563 (QCLB) and to identify potential fecal biomarkers to distinguish the metabolic changes based on intake of probiotic cheese through metabolomics approaches. The dogs were randomly divided into three groups and fed a regular diet without any cheese (control), a diet with queso blanco cheese (QC), or one with QCLB for eight weeks. The concentrations of acetic, propionic, and 4-aminobutyric acids were increased in the QCLB group compared to those in the control group. Additionally, higher levels of propionic acid and lower levels of xylose were found in the QCLB group compared to those in the QC group. This is the first report on the identification of metabolic changes in beagle dogs fed queso blanco cheese with added L. reuteri KACC 92293 and B. longum KACC 91563. We also found that metabolomics approaches can be useful for identifying potential fecal markers in dogs fed probiotic cheese.
Project description:Enterococcus faecalis is commonly isolated from the gastrointestinal tract of healthy infants and adults, where it contributes to host health and well-being. We describe here the draft genome sequence of E. faecalis PC1.1, a candidate probiotic strain isolated from human feces.
Project description:In the present study, a Gram-positive bacterium was isolated from the intestine of healthy crucian carp Carassius auratus and named strain R8. It was initially identified as Enterococcus faecium according to its morphological, physiological and biochemical characteristics. Further identification by using 16S rRNA gene sequence analysis confirmed the R8 strain (Genbank accession no. MF928076) as E. faecium. Challenge and hemolysis experiments showed that the E. faecium R8 strain had no toxicity to the crucian carp. Bacteriostatic experiment showed that this isolate obviously inhibited the growth of Aeromonas veronii and Staphylococcus haemolyticus. The proliferation of E. faecium R8 strain occurred after exposure to various growth conditions such as at pH values from 2.0 to 4.0 for 8 h, bile concentrations from 0.2 to 1.2% and high temperature of 80 °C. This bacterial strain grew best under the condition of 37 °C, pH 7.0 and salinity 30 ppt, and its growth curve exhibited four distinct phases. These results showed that the E. faecium R8 strain had potential probiotic characteristics and could be used as a candidate strain for aquatic probiotics.