Project description:The production, use, and waste of plastics increased worldwide, which resulted in environmental pollution and a growing public health problem. In particular, microplastics have the potential to accumulate in humans and mammals through the food chain. However, the toxicity of microplastics is not well understood. In this study, we investigated the toxicity of 10-50 μm polyethylene microplastics following single- and 28-day repeated oral administration (three different doses of microplastics of 500, 1000, and 2000 mg/kg/day) in ICR mice. For the investigation, we administered the microplastics orally for single- and 28-day repeated. Then, the histological and clinical pathology evaluations of the rodents were performed to evaluation of the toxicity test, and Raman spectroscopy was used to directly confirm the presence of polyethylene microplastics. In the single oral dose toxicity experiments, there were no changes in body weight and necropsy of the microplastics-treated group compared with that of controls. However, a histopathological evaluation revealed that inflammation from foreign bodies was evident in the lung tissue from the 28-day repeated oral dose toxicity group. Moreover, polyethylene microplastics were detected in the lung, stomach, duodenum, ileum, and serum by Raman spectroscopy. Our results corroborated the findings of lung inflammation after repeated oral administration of polyethylene microplastics. This study provides evidence of microplastic-induced toxicity following repeated exposure to mice.
Project description:Microplastic (MP) pollution in agricultural soils, resulting from the use of plastic mulch, compost, and sewage sludge, jeopardizes the soil microbial populations. However, the effects of MPs on soil chemical properties and microbial communities remain largely unknown. Here, we investigated the effects of different concentration levels (0, 0.1, 1, 3, 5, and 7%; w:w) of low-density polyethylene (LDPE) MPs on the chemical properties and bacterial communities of agricultural soil in an incubation study. The addition of LDPE MPs did not drastically change soil pH (ranging from 8.22 to 8.42). Electrical conductivity increased significantly when the LDPE MP concentrations were between 1 and 7%, whereas the total exchangeable cations (Na+, K+, Mg2+, and Ca2+) decreased significantly at higher LDPE MP concentrations (3-7%). The highest available phosphorus content (2.13 mg kg-1) was observed in 0.1% LDPE MP. Bacterial richness (Chao1 and Ace indices) was the lowest at 0.1% LDPE MP, and diversity indices (Shannon and Invsimpson) were higher at 0 and 1% LDPE MP than at other concentrations. The effect of LDPE MP concentrations on bacterial phyla remained unchanged, but the bacterial abundance varied. The relative abundance of Proteobacteria (25.8-33.0%) was the highest in all treatments. The abundance of Acidobacteria (15.8-17.2%) was also high, particularly in the 0, 0.1, and 1% LDPE MPs. With the increase in LDPE MP concentration, the abundance of Actinobacteria gradually increased from 7.80 to 31.8%. Our findings suggest that different MP concentration levels considerably alter soil chemical properties and microbial composition, which may potentially change the ecological functions of soil ecosystems.
Project description:Several compounds with the known ability to perform as inhibitors of advanced glycation endproducts (AGE) have been studied with Density Functional Theory (DFT) through the use of anumberofdensityfunctionalswhoseaccuracyhasbeentestedacrossabroadspectrumofdatabases in Chemistry and Physics. The chemical reactivity descriptors for these systems have been calculated through Conceptual DFT in an attempt to relate their intrinsic chemical reactivity with the ability to inhibit the action of glycating carbonyl compounds on amino acids and proteins. This knowledge could be useful in the design and development of new drugs which can be potential medicines for diabetes and Alzheimer's disease.
Project description:In this study, we report the biodiversity and functional characteristics of microplastic-attached biofilms originating from two freshwater bacterial communities. Even though the microplastic-biofilm (MPB) diversities are mostly determined by original bacteria instead of microplastic types, the results from 16S rRNA amplicon sequencing still showed that the dynamic biofilm successions on different microplastics were highly dissimilar. Furthermore, the analysis of biomarkers indicated distinct bacterial species with significant dissimilarities between different MPBs, which further determined the associated functions. The co-occurrence networks showed distinct interconnective characteristics in different MPBs: The structure of MPB incubated in the lake water sample was more robust under environmental stresses, and bacteria in the tap water MPB interacted more cooperatively. Regarding this cooperative interaction, the analysis of functional prediction, in this study, also showed that more symbionts and parasites colonized on microplastics in the tap water than in the lake water. Moreover, it was suggested that MPBs were more easily formed in the tap water sample. The overall results revealed significant dissimilarities in bacterial diversity, succession, and associated functions between MPBs, in which bacterial species with specific functions should be taken seriously.
Project description:The COVID-19 pandemic has caused unprecedented negative impacts in the modern era, including economic, social, and public health losses. On the other hand, the potential effects that the input of SARS-CoV-2 in the aquatic environment from sewage may represent on non-target organisms are not well known. In addition, it is not yet known whether the association of SARS-CoV-2 with other pollutants, such as microplastics (MPs), may further impact the aquatic biota. Thus, we aimed to evaluate the possible ecotoxicological effects of exposure of male adults Poecilia reticulata, for 15 days, to inactivated SARS-CoV-2 (0.742 pg/L; isolated SARS.CoV2/SP02.2020.HIAE.Br) and polyethylene MP (PE MPs) (7.1 × 104 particles/L), alone and in combination, from multiple biomarkers. Our data suggest that exposure to SARS-CoV-2 induced behavioral changes (in the open field test), nephrotoxic effect (inferred by the increase in creatinine), hepatotoxic effect (inferred by the increase in bilirubin production), imbalance in the homeostasis of Fe, Ca, and Mg, as well as an anticholinesterase effect in the animals [marked by the reduction of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity]. On the other hand, exposure to PE MPs induced a genotoxic effect (assessed by the comet assay), as well as an increase in enzyme activity alpha-amylase, alkaline phosphatase, and carboxylesterases. However, we did not show synergistic, antagonistic, or additive effects caused by the combined exposure of P. reticulata to SARS-CoV-2 and PE MPs. Principal component analysis (PCA) and values from the "Integrated Biomarker Response" index indicate that exposure to SARS-CoV-2 was determinant for a more prominent effect in the evaluated animals. Therefore, our study sheds light on the ecotoxicity of the new coronavirus in non-target organisms and ratifies the need for more attention to the impacts of COVID-19 on aquatic biota.
Project description:A method for producing nanocomposites of unsaturated polyester resins (UPR) based on recycled polyethylene terephthalate (PET) as a matrix has been proposed. The upcycling method involves three successive stages: (1) oligoesters synthesis, (2) simultaneous glycolysis and interchain exchange of oligoesters with PET, (3) interaction of the obtained resins with glycol and maleic anhydride. UPRs were characterized by FTIR spectroscopy and gel permeation chromatography. The mechanical properties of nanocomposites obtained on the basis of these resins and titanium dioxide have been investigated. It has been shown that 1,2-propylene glycol units, despite their lower reactivity, significantly improve the properties of UPR. The most promising nanocomposite sample exhibited tensile strength 112.62 MPa, elongation at break 157.94%, and Young's modulus 29.95 MPa. These results indicate that the proposed method made it possible to obtain nanocomposites with high mechanical properties based on recycled PET thus allowing one to create a valuable product from waste.
Project description:Microplastics (MPs) are persistent tiny pieces of plastic material in the environment that are capable of adsorbing environmental organic pollutants from their surroundings. The interaction of MPs with organic pollutants alters their environmental behavior, i.e., their adsorption, degradation and toxicity, etc. Polyethylene (PE) is the most widely used plastic material. The environmental weathering of PE results in changes to its surface chemistry, making the polymer a much better vector for organic pollutants than virgin PE. In this study, a laboratory-accelerated weathering experiment was carried out with a virgin PE film and an oxidatively degradable PE (OXO-PE) film, i.e., PE modified by the addition of a pro-oxidant catalyst. The degradation of PE and OXO-PE was assessed through Fourier transform infra-red (FTIR) spectroscopy and their wettability was measured by contact angle (CA) measurements. Their thermal properties and morphology were studied using thermogravimetric analyses (TGA) and scanning electron microscopy (SEM), respectively. Further, the adsorption of two model organic pollutants onto weathered and virgin PE was analyzed. Triclosan (TCS) and methylparaben (MeP) were chosen as model organic pollutants for the adsorption experiment due to their frequent use in the cosmetics industry, their uncontrolled release into the environment and their toxicity. The adsorption of both model pollutants onto PE and OXO-PE MP was analyzed by using gas chromatography with a flame ionization detector (GC-FID). The adsorption of MeP onto OXO-PE was higher than onto PE MPs. However, TCS showed insignificant adsorption onto PE and OXO-PE. When both pollutants were present simultaneously, the adsorption of TCS onto both PE and OXO-PE was significantly influenced by the presence of MeP. This result demonstrates that the adsorption behavior of one pollutant can be significantly altered by the presence of another pollutant. Both the effect of weathering on the adsorption of organic pollutants as well as the interaction between organic pollutants adsorbing onto MPs is highly relevant to actual MP pollution in the environment, where MPs are exposed to weathering conditions and mixtures of organic pollutants.
Project description:Magnetic extraction offers a rapid and low-cost solution to microplastic (MP) separation, in which we magnetize the hydrophobic surface of MPs to separate them from complex environmental matrices using magnets. We synthesized a hydrophobic Fe-silane based nanocomposite (Fe@SiO2/MDOS) to separate MPs from freshwater. Pristine and weathered, polyethylene (PE) and tire wear particles (TWP) of different sizes were used in the study. The weathering of MPs was performed in an accelerated weathering chamber according to ISO 4892-2:2013 standards that mimic natural weathering conditions. The chemical properties and morphology of the Fe@SiO2/MDOS, PE and TWP were confirmed by Fourier transform infrared spectroscopy and Scanning electron microscopy, respectively. The thermal properties of PE and TWP were evaluated by Thermogravimetric analysis. Using 1.00 mg of Fe@SiO2/MDOS nanocomposite, 2.00 mg of pristine and weathered PE were extracted from freshwater; whereas, using the same amount of the nanocomposite, 7.92 mg of pristine TWP and 6.87 mg of weathered TWP were extracted. The retrieval of weathered TWP was 13% less than that of pristine TWP, which can be attributed to the increasing hydrophilicity of weathered TWP. The results reveal that the effectiveness of the magnetic separation technique varies among different polymer types and their sizes; the weathering of MPs also influences the magnetic separation efficiency.
Project description:Solitons are proposed as the agents of plastic and viscoelastic deformation in aligned polyethylene. Interactions between straight, parallel molecules are mapped rigorously onto the Frenkel-Kontorova model. It is shown that these molecular interactions distribute an applied load between molecules, with a characteristic transfer length equal to the soliton width. Load transfer leads to the introduction of tensile and compressive solitons at the chain ends to mark the onset of plasticity at a well-defined yield stress, which is much less than the theoretical pull-out stress. Interaction energies between solitons and an equation of motion for solitons are derived. The equation of motion is based on Langevin dynamics and the fluctuation-dissipation theorem and it leads to the rigorous definition of an effective mass for solitons. It forms the basis of a soliton dynamics in direct analogy to dislocation dynamics. Close parallels are drawn between solitons in aligned polymers and dislocations in crystals, including the configurational force on a soliton. The origins of the strain rate and temperature dependencies of the viscoelastic behaviour are discussed in terms of the formation energy of solitons. A failure mechanism is proposed involving soliton condensation under a tensile load.