Project description:Urbanization can change biodiversity in both directions, positive and negative, and despite the rising global trend of urban beekeeping, little is known about the impact of urbanization on the genetic diversity of honey bees. We investigate how urbanization affects the genetic variability of feral and managed honey bee colonies that are spread throughout the entire city, even in highly urban areas, through genetic analysis of 82 worker bees. We found convincing evidence of high genetic differentiation between these two groups. Additionally, by comparing city samples with 241 samples from 46 apiaries in rural parts of the country, variations in mitochondrial tRNAleu-cox2 intergenic region and microsatellite loci indicated that feral colonies have distinct patterns of genetic diversity. These results, with evidence that feral honey bees find niches within highly modified and human-dominated urban landscapes, lead us to conclude that urbanization is a driver of the genetic diversity of feral honey bees in the city.
Project description:The genetic diversity of the USA honey bee (Apis mellifera L.) populations was examined through a molecular approach using two mitochondrial DNA (mtDNA) markers. A total of 1,063 samples were analyzed for the mtDNA intergenic region located between the cytochrome c oxidase I and II (COI-COII) and 401 samples were investigated for the NADH dehydrogenase 2 (ND2) coding gene. The samples represented 45 states, the District of Colombia and two territories of the USA. Nationwide, three maternal evolutionary lineages were identified: the North Mediterranean lineage C (93.79%), the West Mediterranean lineage M (3.2%) and the African lineage A (3.01%). A total of 27 haplotypes were identified, 13 of them (95.11%) were already reported and 14 others (4.87%) were found to be novel haplotypes exclusive to the USA. The number of haplotypes per state/territory ranged between two and eight and the haplotype diversity H ranged between 0.236-0.763, with a nationwide haplotype diversity of 0.597. Furthermore, the honey bee populations of the USA were shown to rely heavily (76.64%) on two single haplotypes (C1 = 38.76%, C2j = 37.62%) of the same lineage characterizing A. m. ligustica and A. m. carnica subspecies, respectively. Molecular-variance parsimony in COI-COII and ND2 confirmed this finding and underlined the central and ancestral position of C2d within the C lineage. Moreover, major haplotypes of A. m. mellifera (M3a, M7b, M7c) were recorded in six states (AL, AR, HI, MO, NM and WA). Four classic African haplotypes (A1e, A1v, A4, A4p) were also identified in nine states and Puerto Rico, with higher frequencies in southern states like LA, FL and TX. This data suggests the need to evaluate if a restricted mtDNA haplotype diversity in the US honey bee populations could have negative impacts on the beekeeping sustainability of this country.
Project description:Plant pollination by the western honey bee Apis mellifera is an irreplaceable agroecological and economic cornerstone currently under threat. Recent colony loss has been consistently linked to the increased prevalence of deformed wing virus (DWV), an Iflavirus transmitted from the ecoparasitic mite Varros destructor. While DWV has been detected in the honey bee brain and causally linked to behavioral impairment, the molecular impact of infection on brain gene expression is largely unknown. Recently, we discovered that two published and two new brain transcriptomic studies conducted in our lab contained DWV contamination in over 99% of sequenced honey bee samples. This unanticipated finding sharply contrasted with the experimental paradigms of these four studies, as no physical or behavioral signs of DWV were detected in any of the 335 individual honey bees sampled. We took this opportunity to perform a meta-analysis and test the hypothesis that DWV influences brain gene expression, a relationship which could be linked to the massive depopulation events observed around the world. Results from our study support commonalities in the molecular consequences of DWV in the honey bee brain and implicate specific genes and biological processes associated with infection. Next, we used single-cell RNA-Sequencing to implicate glia as active responders to viral infection. Finally, we performed viral gene expression analysis on a subset of samples and found DWV type A as well as a previously unreported A-B recombinant in the brain. We present this meta-analysis as a first step toward addressing a potential missing link between viral infection and behavior in honey bees.
Project description:This dataset represents RNA-Seq data that was later found to have widespread contamination with Deformed Wing virus (DWV). It has been incorporated in a meta-analysis of DWV's impact on brain gene expression
Project description:This dataset represents RNA-Seq data that was later found to have widespread contamination with Deformed Wing virus (DWV). It has been incorporated in a meta-analysis of DWV's impact on brain gene expression
Project description:The diversity and local differentiation of honey bees are subjects of broad general interest. In particular, the classification of Ethiopian honey bees has been a subject of debate for decades. Here, we conducted an integrated analysis based on classical morphometrics and a putative nuclear marker (denoted r7-frag) for elevational adaptation to classify and characterize these honey bees. Therefore, 660 worker bees were collected out of 66 colonies from highland, midland and lowland agro-ecological zones (AEZs) and were analyzed in reference to populations from neighboring countries. Multivariate morphometric analyses show that our Ethiopian samples are separate from Apis mellifera scutellata, A. m. jemenitica, A. m. litorea and A. m. monticola, but are closely related to A. m. simensis reference. Linear discriminant analysis showed differentiation according to AEZs in the form of highland, midland and lowland ecotypes. Moreover, size was positively correlated with elevation. Similarly, our Ethiopian samples were differentiated from A. m. monticola and A. m. scutellata based on r7-frag. There was a low tendency towards genetic differentiation between the Ethiopian samples, likely impacted by increased gene flow. However, the differentiation slightly increased with increasing elevational differences, demonstrated by the highland bees that showed higher differentiation from the lowland bees (FST = 0.024) compared to the midland bees (FST = 0.015). An allelic length polymorphism was detected (denoted as d) within r7-frag, showing a patterned distribution strongly associated with AEZ (X2 = 11.84, p < 0.01) and found predominantly in highland and midland bees of some pocket areas. In conclusion, the Ethiopian honey bees represented in this study are characterized by high gene flow that suppresses differentiation.
Project description:BackgroundThe Algerian honey bee population is composed of two described subspecies A. m. intermissa and A. m. sahariensis, of which little is known regarding population genomics, both in terms of genetic differentiation and of possible contamination by exogenous stock. Moreover, the phenotypic differences between the two subspecies are expected to translate into genetic differences and possible adaptation to heat and drought in A. m. sahariensis. To shed light on the structure of this population and to integrate these two subspecies in the growing dataset of available haploid drone sequences, we performed whole-genome sequencing of 151 haploid drones.ResultsIntegrated analysis of our drone sequences with a similar dataset of European reference populations did not detect any significant admixture in the Algerian honey bees. Interestingly, most of the genetic variation was not found between the A. m. intermissa and A. m. sahariensis subspecies; instead, two main genetic clusters were found along an East-West axis. We found that the correlation between genetic and geographic distances was higher in the Western cluster and that close-family relationships were mostly detected in the Eastern cluster, sometimes at long distances. In addition, we selected a panel of 96 ancestry-informative markers to decide whether a sampled bee is Algerian or not, and tested this panel in simulated cases of admixture.ConclusionsThe differences between the two main genetic clusters suggest differential breeding management between eastern and western Algeria, with greater exchange of genetic material over long distances in the east. The lack of detected admixture events suggests that, unlike what is seen in many places worldwide, imports of queens from foreign countries do not seem to have occurred on a large scale in Algeria, a finding that is relevant for conservation purposes. In addition, the proposed panel of 96 markers was found effective to distinguish Algerian from European honey bees. Therefore, we conclude that applying this approach to other taxa is promising, in particular when genetic differentiation is difficult to capture.
Project description:The honey bee Apis mellifera is a rather difficult object for selection due to the peculiarities of its biology. Breeding activities in beekeeping are aimed at obtaining bee colonies with high rates of economically useful traits, such as productivity, resistance to low temperatures and diseases, hygienic behavior, oviposition of the queen, etc. With two apiaries specializing in the breeding of A. m. mellifera and A. m. carnica as examples, the application of genetic methods in the selection of honey bees is considered. The first stage of the work was subspecies identification based on the analysis of the polymorphism of the intergenic mtDNA locus tRNAleu-COII (or COI-COII) and microsatellite nuclear DNA loci Ap243, 4a110, A24, A8, A43, A113, A88, Ap049, A28. This analysis confirmed that the studied colonies correspond to the declared subspecies. In the apiary with A. m. mellifera, hybrid colonies have been identified. A method based on the analysis of polymorphisms of the tRNAleu-COII locus and microsatellite nuclear DNA loci has been developed to identify the dark forest bee A. m. mellifera and does not allow one to differentiate subspecies from C (A. m. carnica and A. m. ligustica) and O (A. m. caucasica) evolutionary lineages from each other. The second stage was the assessment of the allelic diversity of the csd gene. In the apiary containing colonies of A. m. mellifera (N = 15), 20 csd alleles were identified. In the apiary containing colonies of A. m. carnica (N = 44), 41 alleles were identified. Six alleles are shared by both apiaries. DNA diagnostics of bee diseases showed that the studied colonies are healthy. Based on the data obtained, a scheme was developed for obtaining primary material for honey bee breeding, which can subsequently be subjected to selection according to economically useful traits. In addition, the annual assessment of the allelic diversity of the csd gene will shed light on the frequency of formation of new allelic variants and other issues related to the evolution of this gene.
Project description:With globalization the Western honey bee has become a nearly cosmopolitan species, but it was originally restricted to the Old World. This renowned model of biodiversity has diverged into five evolutionary lineages and several geographic "subspecies." If Apis mellifera unicolor is indubitably an African subspecies endemic to Madagascar, its relationship with honey bees from three archipelagos in the southwest Indian Ocean (SWIO) hotspot of biodiversity is misunderstood. We compared recent mtDNA diversity data to an original characterization of the nuclear diversity from honey bees in the Mascarenes and Comoros archipelagos, using 14 microsatellites, but also additional mtDNA tRNALeu-cox2 analysis. Our sampling offers the most comprehensive dataset for the SWIO populations with a total of 3,270 colonies from 10 islands compared with 855 samples from Madagascar, 113 from Africa, and 138 from Europe. Comprehensive mitochondrial screening confirmed that honey bees from La Réunion, Mauritius, and Comoros archipelagos are mainly of African origin (88.1% out of 2,746 colonies) and that coexistence with European lineages occurs only in the Mascarenes. PCA, Bayesian, and genetic differentiation analysis showed that African colonies are not significantly distinct on each island, but have diversified among islands and archipelagos. FST levels progressively decreased in significance from European and African continental populations, to SWIO insular and continental populations, and finally among islands from the same archipelago. Among African populations, Madagascar shared a nuclear background with and was most closely related to SWIO island populations (except Rodrigues). Only Mauritius Island presented clear cytoplasmic disequilibrium and genetic structure characteristic of an admixed population undergoing hybridization, in this case, between A. m. unicolor and A. m. ligustica, A. m. carnica and A. m. mellifera-like individuals. Finally, global genetic clustering analysis helped to better depict the colonization and introduction pattern of honey bee populations in these archipelagos.
Project description:Paenibacillus larvae is the causative agent of American foulbrood (AFB), a virulent disease of honeybee (Apis mellifera) larvae. In Tunisia, AFB has been detected in many beekeeping areas, where it causes important economic losses, but nothing is known about the diversity of the causing agent. Seventy-five isolates of P. larvae, identified by biochemical tests and 16S rRNA gene sequencing, were obtained from fifteen contaminated broods showing typical AFB symptoms, collected in different locations in the northern part of the country. Using BOX-PCR, a distinct profile of P. larvae with respect to related Paenibacillus species was detected which may be useful for its identification. Some P. larvae-specific bands represented novel potential molecular markers for the species. BOX-PCR fingerprints indicated a relatively high intraspecific diversity among the isolates not described previously with several molecular polymorphisms identifying six genotypes on polyacrylamide gel. Polymorphisms were also detected in several biochemical characters (indol production, nitrate reduction, and methyl red and oxidase tests). Contrary to the relatively high intraspecies molecular and phenotypic diversity, the in vivo virulence of three selected P. larvae genotypes did not differ significantly, suggesting that the genotypic/phenotypic differences are neutral or related to ecological aspects other than virulence.