Project description:Fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) is an invasive and noxious pest of maize (Zea mays), which is native to tropical and subtropical regions of America. It is now an invasive pest of Indian Sub continent, first reported from Karnataka on maize in 2018.
Project description:The time that elapsed between the initial introduction and the proliferation of an invasive species is referred to as the lag phase. The identification of the lag phase is critical for generating plans for pest management and for the prevention of biosecurity failure. However, lag phases have been identified mostly through retrospective searches of historical records. The agricultural pest fall armyworm (FAW; Spodoptera frugiperda) is native to the New World. FAW invasion was first reported from West Africa in 2016, then it spread quickly through Africa, Asia, and Oceania. Here, using population genomics approaches, we demonstrate that the FAW invasion involved an undocumented lag phase. Invasive FAW populations have negative signs of genomic Tajima's D, and invasive population-specific genetic variations have particularly decreased Tajima's D, supporting a substantial amount of time for the generation of new mutations in introduced FAW populations. Model-based diffusion approximations support the existence of a period with a cessation of gene flow between native and invasive FAW populations. Taken together, these results provide strong support for the presence of a lag phase during the FAW invasion. These results show the usefulness of using population genomics analyses to identify lag phases in biological invasions.
Project description:The fall armyworm (Spodoptera frugiperda, J.E. Smith) is a noctuid moth that is a major and ubiquitous agricultural pest in the Western Hemisphere. Infestations have recently been identified in several locations in Africa, indicating its establishment in the Eastern Hemisphere where it poses an immediate and significant economic threat. Genetic methods were used to characterize noctuid specimens infesting multiple cornfields in the African nation of Togo that were tentatively identified as fall armyworm by morphological criteria. Species identification was confirmed by DNA barcoding and the specimens were found to be primarily of the subgroup that preferentially infests corn and sorghum in the Western Hemisphere. The mitochondrial haplotype configuration was most similar to that found in the Caribbean region and the eastern coast of the United States, identifying these populations as the likely originating source of the Togo infestations. A genetic marker linked with resistance to the Cry1Fa toxin from Bacillus thuringiensis (Bt) expressed in transgenic corn and common in Puerto Rico fall armyworm populations was not found in the Togo collections. These observations demonstrate the usefulness of genetic surveys to characterize fall armyworm populations from Africa.
Project description:The fall armyworm (FAW), Spodoptera frugiperda, is a significant pest of many crops in the world and it is native to the Americas, where the species has shown the ability to rapidly evolve resistance to insecticides and transgenic plants. Despite the importance of this species, there is a gap in the knowledge regarding the genetic structure of FAW in South America. Here, we examined the genetic diversity of FAW populations across a wide agricultural area of Brazil and Argentina using a Genotyping-by-Sequencing (GBS) approach. We also characterized samples by their host strain based on mitochondrial and Z-linked genetic markers. The GBS methodology enabled us to discover 3309 SNPs, including neutral and outlier markers. Data showed significant genetic structure between Brazil and Argentina populations, and also among the Argentinian ecoregions. Populations inside Brazil showed little genetic differentiation indicating high gene flow among locations and confirming that structure is related to the presence of corn and rice strains. Outlier analysis indicated 456 loci putatively under selection, including genes possibly related to resistance evolution. This study provides clarification of the population genetic structure of FAW in South America and highlights the importance of genomic research to understand the risks of spread of resistance genes.
Project description:The fall armyworm, Spodoptera frugiperda (J.E. Smith), is comprised of two genetically distinct strains that are morphologically identical yet exhibit differences in their behavior and physiology (C-strain and R-strain). Evidence of ongoing genetic differentiation between strains highlights the importance of considering strain identity in research and management of fall armyworm populations, but the logistical and technical burden of genotyping limits strain-specific applications. Controlled experiments with laboratory colonies have shown that the strains engage in allochronic ("allo" - different, "chronic" - time) mating behavior, with C-strain mating early in the evening (0-5 hours after sunset) and R-strain mating late in the evening (5-10 hours after sunset). Using temporal field collections and genotype data, we show that strain-specific variation in allochronic male mating behavior occurs across Texas and Florida fall armyworm populations, both of which act as primary source populations for annual migrations of this pest into the continental United States. Time of capture in pheromone traps was significantly different between strains in both Texas and Florida, with the R-strain males consistently being collected in the traps late in the night. The C-strain males were generally captured earlier in the night than their R-strain counterparts, though there was notable variation in the timing between nights and across locations. Allochronic behavior in field populations is consistent with previous laboratory studies reporting differences in the timing of mating between the strains, however increased variability in behavior within and across native populations was observed. Although allochronic behavior in local populations may partially contribute to reproductive isolation between the strains, the behavior is not consistent enough to serve as a complete reproductive barrier. Furthermore, the observed variability in behavior both within and between independent sampling events, especially in the C-strain, poses a challenge to the development of models that utilize time of capture as a predictive phenotype for monitoring strain identity in local populations.
Project description:During the over 300 million years of co-evolution between herbivorous insects and their host plants, a dynamic equilibrium of evolutionary arms race has been established. However, the co-adaptation between insects and their host plants is a complex process, often driven by multiple evolutionary mechanisms. We found that various lepidopteran pests that use maize as a host exhibit differential adaptation to the plant secondary metabolites, benzoxazinoids (BXs). Notably, the Spodoptera genus, including Spodoptera frugiperda (fall armyworm) and Spodoptera litura (cotton leafworm), demonstrate greater tolerance to BXs compared to other insects. Through comparative transcriptomic analysis of the midgut, we identified four candidate genes potentially involved in BXs detoxification in S. frugiperda. Subsequently, we confirmed two UGT genes, Sfru33T10 and Sfru33F32, as key players in BXs detoxification using CRISPR/Cas9 gene-editing technology. Phylogenetic analysis revealed that Sfru33T10 evolved independently within the Noctuidae family and is involved in the glycosylation of HDMBOA, while Sfru33F32 evolved independently within the Spodoptera genus and functions as a key detoxification enzyme responsible for the glycosylation of both DIMBOA and HMBOA. Our study demonstrates that the UGT gene family plays a crucial role in the adaptation of noctuid insects to maize, with multiple independent evolutionary events within the Noctuidae family and the Spodoptera genus contributing significantly to host adaptation.
Project description:BackgroundThe invasive and calamitous polyphagous pest Spodoptera frugiperda or commonly known as fall armyworm (FAW) poses serious menace to the global agricultural production. Owing to the revamped invasion of FAW in 2018 in India, present study was undertaken for precise assessment of its genetic identity and pesticide resistance to aid in pest-management strategies.ResultsTo evaluate the diversity in FAW population across Eastern India, mitochondrial COI sequences were used which revealed a low nucleotide diversity. Analysis of molecular variance indicated significant genetic variation between four global geographical FAW populations with lowest differentiation between India and Africa suggesting a present-day and shared origin of FAW. The study demonstrated existence of two different strains ('R' strain and 'C' strain) based on COI gene marker. However, discrepancies between COI marker and host plant association of FAW was observed. Characterization of Tpi gene revealed abundance of TpiCa1a followed by TpiCa2b and TpiR1a strains respectively. The FAW population showed higher susceptibility towards chlorantraniliprole and spinetoram than cypermethrin. Insecticide resistance genes depicted marked upregulation although with lot of variance. Chlorantraniliprole resistance ratio (RR) exhibited significant correlation with 1950 (Glutathione S-transferase, GST), 9131 (Cytochrome P450, CYP) and 9360 (CYP) genes, while spinetoram and cypermethrin RR was found to correlate with 1950 (GST) and 9360 (CYP) genes.ConclusionThis study manifests Indian subcontinent as the potential new hotspot for the growth and distribution of FAW population that can be effectively controlled using chlorantraniliprole and spinetoram. This study also adds novel significant information on FAW population across Eastern India for developing a comprehensive pest management approach for S. frugiperda.
Project description:Phytophthora infestans, the causal agent of late blight disease, has been reported in North America since the mid-nineteenth century. In the United States the lack of or very limited sexual reproduction has resulted in largely clonal populations of P. infestans. In 2010 and 2011, but not in 2012 or 2013, 20 rare and diverse genotypes of P. infestans were detected in a region that centered around central New York State. The ratio of A1 to A2 mating types among these genotypes was close to the 50∶50 ratio expected for sexual recombination. These genotypes were diverse at the glucose-6-phosphate isomerase locus, differed in their microsatellite profiles, showed different banding patterns in a restriction fragment length polymorphism assay using a moderately repetitive and highly polymorphic probe (RG57), were polymorphic for four different nuclear genes and differed in their sensitivity to the systemic fungicide mefenoxam. The null hypothesis of linkage equilibrium was not rejected, which suggests the population could be sexual. These new genotypes were monomorphic in their mitochondrial haplotype that was the same as US-22. Through parentage exclusion testing using microsatellite data and sequences of four nuclear genes, recent dominant lineages US-8, US-11, US-23, and US-24 were excluded as possible parents for these genotypes. Further analyses indicated that US-22 could not be eliminated as a possible parent for 14 of the 20 genotypes. We conclude that US-22 could be a parent of some, but not all, of the new genotypes found in 2010 and 2011. There were at least two other parents for this population and the genotypic characteristics of the other parents were identified.
Project description:The objective of this study was to quantify the magnitude of absolute and relative oral health inequality in countries with similar socio-political environments, but differing oral health care systems such as Canada, the United States (US), and the United Kingdom (UK), in the first decade of the new millennium. Clinical oral health data were obtained from the Canadian Health Measures Survey 2007-2009, the National Health and Nutrition Examination Survey 2007-2008, and the Adult Dental Health Survey 2009, for Canada, the US and UK, respectively. The slope index of inequality (SII) and relative index of inequality (RII) were used to quantify absolute and relative inequality, respectively. There was significant oral health inequality in all three countries. Among dentate individuals, inequality in untreated decay was highest among Americans (SII:28.2; RII:4.7), followed by Canada (SII:21.0; RII:3.09) and lowest in the UK (SII:15.8; RII:1.75). Inequality for filled teeth was negligible in all three countries. For edentulism, inequality was highest in Canada (SII: 30.3; RII: 13.2), followed by the UK (SII: 10.2; RII: 11.5) and lowest in the US (SII: 10.3; and RII: 9.26). Lower oral health inequality in the UK speaks to the more equitable nature of its oral health care system, while a highly privatized dental care environment in Canada and the US may explain the higher inequality in these countries. However, despite an almost equal utilization of restorative dental care, there remained a higher concentration of unmet needs among the poor in all three countries.
Project description:One type of climate change denial is the belief that climate change is naturally occurring instead of human caused; this form of denial is known as attribution skepticism or soft denial. While considerable research has addressed outright climate change denial, little research has focused specifically on soft denial and its complex and politicized relationship with science. We examine this form of denial using original survey data collected in 2017 in the United States (n = 1510) and in 2019 in Canada (n = 1545). Contrary to expectations about the United States being more divided by political ideology on the topic of climate change, we find that - after accounting for trust in political leaders - Canadians' views are driven more by ideological position than those of Americans. In the United States, climate denial is related to trust in President Trump as a source of information about climate change. The study of soft denial is important as it undermines the rationale for climate change solutions.