Project description:AbstractKey social traits, like queen number in eusocial insect colonies, have long been considered plastic, but the recent finding that colony social organization is under strict genetic control in multiple ant lineages challenges this view. This begs the question of which hardwired behavioral mechanism(s) generate alternative forms of social organization during colony development. We addressed this question in the Alpine silver ant, Formica selysi, a species with two social forms determined by a supergene. Queens that carry exclusively the M haplotype are produced by and live in monogyne (= single-queen) colonies, whereas queens that carry at least one copy of the P haplotype are produced by and live in polygyne (= multiple-queen) colonies. With extensive field samplings and laboratory experiments, we show that both types of queens successfully establish colonies independently, without being accompanied by workers, but that they do so in contrasting ways. Monogyne queens were generally intolerant of other queens and founded colonies solitarily, whereas polygyne queens were mutually attracted to each other and mainly founded colonies cooperatively. These associations persisted for months after worker emergence, suggesting that cooperative colony-founding leads to permanent multiple queening. Overall, our study shows that queens of each social form found colonies independently in the field but that P-carrying queens are more likely to cooperate, thereby contributing to perpetuate alternative forms of social organization.Significance statementUnderstanding the genetic and behavioral underpinnings of social organization is a major goal in evolutionary biology. Recent studies have shown that colony social organization is controlled by supergenes in multiple ant lineages. But the behavioral processes linking the genotype of a queen to the type of colony she will form remain largely unknown. Here, we show that in Alpine silver ants, alternative supergene genotypes are associated with different levels of social attraction and tolerance in young queens. These hardwired differences in social traits make queens carrying the P supergene haplotype more prone to cooperate and form durable associations during independent colony-founding. These findings help explain how genetic variants induce alternative forms of social organization during the ontogeny of a colony. They also illustrate how simple phenotypic differences at the individual level can result in large differences at higher levels of organization.Supplementary informationThe online version contains supplementary material available at 10.1007/s00265-021-03105-1.
Project description:One of the fundamental questions in biology is how cooperative and altruistic behaviors evolved. The majority of studies seeking to identify the genes regulating these behaviors have been performed in systems where behavioral and physiological differences are relatively fixed, such as in the honey bee. During colony founding in the monogyne (one queen per colony) social form of the fire ant Solenopsis invicta, newly-mated queens may start new colonies either individually (haplometrosis) or in groups (pleometrosis). However, only one queen (the "winner") in pleometrotic associations survives and takes the lead of the young colony while the others (the "losers") are executed. Thus, colony founding in fire ants provides an excellent system in which to examine the genes underpinning cooperative behavior and how the social environment shapes the expression of these genes. We developed a new whole genome microarray platform for S. invicta to characterize the gene expression patterns associated with colony founding behavior. First, we compared haplometrotic queens, pleometrotic winners and pleometrotic losers. Second, we manipulated pleometrotic couples in order to switch or maintain the social ranks of the two cofoundresses. Haplometrotic and pleometrotic queens differed in the expression of genes involved in stress response, aging, immunity, reproduction and lipid biosynthesis. Smaller sets of genes were differentially expressed between winners and losers. In the second experiment, switching social rank had a much greater impact on gene expression patterns than the initial/final rank. Expression differences for several candidate genes involved in key biological processes were confirmed using qRT-PCR. Our findings indicate that, in S. invicta, social environment plays a major role in the determination of the patterns of gene expression, while the queen's physiological state is secondary. These results highlight the powerful influence of social environment on regulation of the genomic state, physiology and ultimately, social behavior of animals.
Project description:The dynamics of host-parasite interactions can change dramatically over the course of a chronic infection as the internal (physiological) and external (environmental) conditions of the host change. When queens of social insects found a colony, they experience changes in both their physiological state (they develop their ovaries and begin laying eggs) and the social environment (they suddenly stop interacting with the other members of the mother colony), making this an excellent model system for examining how these factors interact with chronic infections. We investigated the dynamics of host-viral interactions in queens of Solenopsis invicta (fire ant) as they transition from mating to colony founding/brood rearing to the emergence of the first workers. We examined these dynamics in naturally infected queens in two different social environments, where queens either founded colonies as individuals or as pairs. We hypothesized that stress associated with colony founding plays an important role in the dynamics of host-parasite interactions. We also hypothesized that different viruses have different modalities of interaction with the host that can be quantified by physiological measures and genomic analysis of gene expression in the host. We found that the two most prevalent viruses, SINV-1 and SINV-2, are associated with different fitness costs that are mirrored by different patterns of gene expression in the host. In fact SINV-2, the virus that imposes the significant reduction of a queen's reproductive output is also associated with larger changes of global gene expression in the host. These results show the complexity of interactions between S. invicta and two viral parasites. Our findings also show that chronic infections by viral parasites in insects are dynamic processes that may pose different challenges in the host, laying the groundwork for interesting ecological and evolutionary considerations.
Project description:The emergence of caste-differentiated colonies, which have been defined as 'superorganisms', in ants, bees, and wasps represents a major transition in evolution. Lifetime mating commitment by queens, pre-imaginal caste determination and lifetime unmatedness of workers are key features of these animal societies. Workers in superorganismal species like honey bees and many ants have consequently lost, or retain only vestigial spermathecal structures. However, bumble bee workers retain complete spermathecae despite 25-40 million years since their origin of superorganismality, which remains an evolutionary mystery. Here, we show (i) that bumble bee workers retain queen-like reproductive traits, being able to mate and produce colonies, underlain by queen-like gene expression, (ii) the social conditions required for worker mating, and (iii) that these abilities may be selected for by early queen-loss in these annual species. These results challenge the idea of lifetime worker unmatedness in superorganisms, and provide an exciting new tool for the conservation of endangered bumble bee species.
Project description:BackgroundSocial insects form densely crowded societies in environments with high pathogen loads, but have evolved collective defences that mitigate the impact of disease. However, colony-founding queens lack this protection and suffer high rates of mortality. The impact of pathogens may be exacerbated in species where queens found colonies together, as healthy individuals may contract pathogens from infectious co-founders. Therefore, we tested whether ant queens avoid founding colonies with pathogen-exposed conspecifics and how they might limit disease transmission from infectious individuals.ResultsUsing Lasius niger queens and a naturally infecting fungal pathogen Metarhizium brunneum, we observed that queens were equally likely to found colonies with another pathogen-exposed or sham-treated queen. However, when one queen died, the surviving individual performed biting, burial and removal of the corpse. These undertaking behaviours were performed prophylactically, i.e. targeted equally towards non-infected and infected corpses, as well as carried out before infected corpses became infectious. Biting and burial reduced the risk of the queens contracting and dying from disease from an infectious corpse of a dead co-foundress.ConclusionsWe show that co-founding ant queens express undertaking behaviours that, in mature colonies, are performed exclusively by workers. Such infection avoidance behaviours act before the queens can contract the disease and will therefore improve the overall chance of colony founding success in ant queens.
Project description:BackgroundDivision of labour (DOL) is ubiquitous across biological hierarchies. In eusocial insects, DOL is often characterized by age-related task allocation, but workers can flexibly change their tasks, allowing for DOL reconstruction in fluctuating environments. Behavioural change driven by individual experience is regarded as a key to understanding this task flexibility. However, experimental evidence for the influence of individual experience is remains sparse. Here we tested the effect of individual experience on task choice in the queenless ponerine ant, Diacamma cf. indicum from Japan.ResultsWe confirmed that both nurses and foragers shifted to vacant tasks when the colony composition was biased to one or the other. We also found that nurses which are induced to forage readily revert to nursing when reintroduced into balanced colonies. In contrast, foragers which are induced to revert to nursing very rarely return to a foraging role, even 19 days post reintroduction to their original colony.ConclusionsTaken together, our results suggest that individual experience decreases the response threshold of original foragers, as they continue to be specialist nurses in a disturbed colony. However, original nurses do not appear strongly affected by having forager experience and revert to being nurses. Therefore, while individual experience does have an effect, other factors, such as reproductive ability, are clearly required to understand DOL maintenance in fluctuating environments.
Project description:Cooperative breeding may be selected for in animals when, on average, it confers greater benefits than solitary breeding. In a number of eusocial insects (i.e., ants, bees, wasps, and termites), queens join together to co-create new nests, a phenomenon known as colony co-founding. It has been hypothesised that co-founding evolved because queens obtain several fitness benefits. However, in ants, previous work has suggested that co-founding is a random process that results from high queen density and low nest-site availability. We experimentally examined nest-founding behaviour in the black garden ant, Lasius niger. We gave newly mated queens the choice between two empty nesting chambers, and compared their distribution across the two chambers with that expected under random allocation. We found that queens formed associations of various sizes; in most instances, queens group together in a single chamber. Across all experiments, the frequency of larger groups of queens was significantly higher than expected given random assortment. These results indicate colony co-founding in ants may actually be an active process resulting from mutual attraction among queens. That said, under natural conditions, ecological constraints may limit encounters among newly mated queens.
Project description:Reported widespread declines of wild and managed insect pollinators have serious consequences for global ecosystem services and agricultural production. Bees contribute approximately 80% of insect pollination, so it is important to understand and mitigate the causes of current declines in bee populations . Recent studies have implicated the role of pesticides in these declines, as exposure to these chemicals has been associated with changes in bee behaviour and reductions in colony queen production. However, the key link between changes in individual behaviour and the consequent impact at the colony level has not been shown. Social bee colonies depend on the collective performance of many individual workers. Thus, although field-level pesticide concentrations can have subtle or sublethal effects at the individual level, it is not known whether bee societies can buffer such effects or whether it results in a severe cumulative effect at the colony level. Furthermore, widespread agricultural intensification means that bees are exposed to numerous pesticides when foraging, yet the possible combinatorial effects of pesticide exposure have rarely been investigated. Here we show that chronic exposure of bumblebees to two pesticides (neonicotinoid and pyrethroid) at concentrations that could approximate field-level exposure impairs natural foraging behaviour and increases worker mortality leading to significant reductions in brood development and colony success. We found that worker foraging performance, particularly pollen collecting efficiency, was significantly reduced with observed knock-on effects for forager recruitment, worker losses and overall worker productivity. Moreover, we provide evidence that combinatorial exposure to pesticides increases the propensity of colonies to fail.
Project description:Fire ant queens were collected immediately after a nuptial mating flight and split into two groups: paired queens (pleometrosis) and individual queens(haplometrosis). All the queens were provided with a nesting chamber consisting of a glass tube half-filled with water, which was covered by a cotton ball and a layer of dental plaster. Tubes were sealed with a loose cap to provide air flow. Specimens were reared in the dark at 28C, 70% relative humidity under claustral conditions (no food and no water) for 1 month. After the eclosion of the first batch of workers (minims), incipient colonies were provided with water, sugar water and frozen crickets. Glass tubes were set open in pencil boxes coated with Fluon to prevent escape. Queens were subsequently monitored daily until it was possible to identify the social rank of the two cofoundresses in pleometrotic couples.
Project description:This experiment was performed to investigate the effect of the manipulation of social rank on gene expression. Fire ants newly mated queens were paired and placed in nesting chambers. After emergence of workers, queensM-^R behavior was monitored. Once the behavioral observation revealed the social rank of the two cofoundresses (winners and losers), queens were weighed again and re-paired with a different partner. We created the following three groups of queens: a) winner + winner (similar weight), b) loser + loser (similar weight), and c) winner + loser (different weights). Again, we monitored the behavior until the social rank of the newly coupled specimens was evident and we collected 4 new behavioral phenotypes in the same way as above: a) winners switched into losers (win/los), b) losers switched into winners (los/win), c) continuing winners (win/win) and d) continuing losers (los/los).