Project description:BackgroundMolecular research revealed that some of the European Calypogeia species described on the basis of morphological criteria are genetically heterogeneous and, in fact, are species complexes. DNA barcoding is already commonly used for correct identification of difficult to determine species, to disclose cryptic species, or detecting new taxa. Among liverworts, some DNA fragments, recommend as universal plant DNA barcodes, cause problems in amplification. Super-barcoding based on genomic data, makes new opportunities in a species identification.ResultsOn the basis of 22 individuals, representing 10 Calypogeia species, plastid genome was tested as a super-barcode. It is not effective in 100%, nonetheless its success of species discrimination (95.45%) is still conspicuous. It is not excluded that the above outcome may have been upset by cryptic speciation in C. suecica, as our results indicate. Having the sequences of entire plastomes of European Calypogeia species, we also discovered that the ndhB and ndhH genes and the trnT-trnL spacer identify species in 100%.ConclusionsThis study shows that even if a super-barcoding is not effective in 100%, this method does not close the door to a traditional single- or multi-locus barcoding. Moreover, it avoids many complication resulting from the need to amplify selected DNA fragments. It seems that a good solution for species discrimination is a development of so-called "specific barcodes" for a given taxonomic group, based on plastome data.
Project description:The genus Camellia contains three types of domesticates that meet various needs of ancient humans: the ornamental C. japonica, the edible oil-producing C. oleifera, and the beverage-purposed tea plant C. sinensis. The genomic drivers of the functional diversification of Camellia domesticates remain unknown. Here, we present the genomic variations of 625 Camellia accessions based on a new genome assembly of C. sinensis var. assamica ('YK10'), which consists of 15 pseudo-chromosomes with a total length of 3.35 Gb and a contig N50 of 816,948 bp. These accessions were mainly distributed in East Asia, South Asia, Southeast Asia, and Africa. We profiled the population and subpopulation structure in tea tree Camellia to find new evidence for the parallel domestication of C. sinensis var. assamica (CSA) and C. sinensis var. sinensis (CSS). We also identified candidate genes associated with traits differentiating CSA, CSS, oilseed Camellia, and ornamental Camellia cultivars. Our results provide a unique global view of the genetic diversification of Camellia domesticates and provide valuable resources for ongoing functional and molecular breeding research.
Project description:A putatively monophyletic group of annual Silene species is revised taxonomically and described as the new section S. sect. Arenosae. The species of this section were previously treated as a part of a widely circumscribed and polyphyletic S. sect. Rigidulae. Silene sect. Arenosae as circumscribed here consists of nine species. Members of the section show a predominantly E Mediterranean to SW Asian distribution pattern from Turkey southward to Egypt and eastward to Iran and Pakistan, although most of the species have a limited distribution range. The species of S. sect. Arenosae are characterized by narrowly lanceolate calyx teeth, which are often highly polymorphic, and lanceolate to oblanceolate (non-spathulate) basal leaves. The provided taxonomic revision is based on morphological characters and supported by phylogenetic analyses of two nuclear loci (nrITS and an intron of the RPB2 gene) and one chloroplast locus (the intron of the rps16 gene). The species descriptions are formalized using a novel implementation of the Prometheus Description Model.
Project description:Anthracnose caused by Colletotrichum is one of the most severe diseases that can afflict Camellia sinensis. However, research on the diversity and geographical distribution of Colletotrichum in China remain limited. In this study, 106 Colletotrichum isolates were collected from diseased leaves of Ca. sinensis cultivated in the 15 main tea production provinces in China. Multi-locus phylogenetic analysis coupled with morphological identification showed that the collected isolates belonged to 11 species, including 6 known species (C. camelliae, C. cliviae, C. fioriniae, C. fructicola, C. karstii, and C. siamense), 3 new record species (C. aenigma, C. endophytica, and C. truncatum), 1 novel species (C. wuxiense), and 1 indistinguishable strain, herein described as Colletotrichum sp. Of these species, C. camelliae and C. fructicola were the dominant species causing anthracnose in Ca. sinensis. In addition, our study provided further evidence that phylogenetic analysis using a combination of ApMat and GS sequences can be used to effectively resolve the taxonomic relationships within the C. gloeosporioides species complex. Finally, pathogenicity tests suggested that C. camelliae, C. aenigma, and C. endophytica are more invasive than other species after the inoculation of the leaves of Ca. sinensis.
Project description:IntroductionMany higher plants contain cellular T-DNA (cT-DNA) sequences from Agrobacterium and have been called "natural genetically modified organisms" (nGMOs). Among these natural transformants, the tea plant Camellia sinensis var. sinensis cv. Shuchazao contains a single 5.5 kb T-DNA fragment (CaTA) with three inactive T-DNA genes, with a 1 kb inverted repeat at the ends. Camellia plants are allogamous, so that each individual may contain two different CaTA alleles.Methods142 Camellia accessions, belonging to 10 of 11 species of the section Thea, were investigated for the presence of CaTA alleles.Results discussionAll accessions were found to contain the CaTA insert, showing that section Thea derives from a single transformed ancestor. Allele phasing showed that 82 accessions each contained two different CaTA alleles, 60 others had a unique allele. A phylogenetic tree of these 225 alleles showed two separate groups, A and B, further divided into subgroups. Indel distribution corresponded in most cases with these groups. The alleles of the different Camellia species were distributed over groups A and B, and different species showed very similar CaTA alleles. This indicates that the species boundaries for section Thea may not be precise and require revision. The nucleotide divergence of the indirect CaTA repeats indicates that the cT-DNA insertion took place about 15 Mio years ago, before the emergence of section Thea. The CaTA structure of a C. fangchengensis accession has an exceptional structure. We present a working model for the origin and evolution of nGMO plants derived from allogamous transformants.
Project description:Accurate species delimitation and identification, which is a challenging task in traditional morphology-based taxonomy, is crucial to species conservation. Ottelia acuminata (Hydrocharitaceae) is a severely threatened submerged macrophyte endemic to southwestern China. The taxonomy of O. acuminata, which has long been in dispute, remains unresolved, impeding effective conservation and management practices. Here, we aim to address the long-standing issues concerning species boundary and intraspecific subdivision of O. acuminata using complete plastome sequences as super-barcodes. The taxonomic delimitation of O. acuminata was explored using phylogenetic inference and two independent sequence-based species delimitation schemes: automatic barcode gap discovery (ABGD) and multi-rate Poisson tree processes (mPTP). The reciprocally reinforcing results support the reduction of the closely related congeneric species, O. balansae and O. guanyangensis, as two conspecific varieties of O. acuminata. Within the newly defined O. acuminata, accurate varietal identification can be achieved using plastome super-barcodes. These findings will help inform future decisions regarding conservation, management and restoration of O. acuminata. This case study suggests that the use of plastome super-barcodes can provide a solution for species delimitation and identification in taxonomically difficult plant taxa, thus providing great potential to lessen the challenges of inventorying biodiversity, as well as biologically monitoring and assessing threatened species.
Project description:A new species of Theaceae, Camellia puhoatensis N.S. Lý, V.D. Luong, T.H. Le, D.H. Nguyen & N.D. Do, sp. nov., is described and illustrated from Nghe An Province, North Central Coastal Region, Vietnam. It is most similar to C. chrysanthoides, C. flavida and C. petelotii within sect. Archecamellia in shape and colouration of leaf, petal, ovary and glabrous stamen, but differs by its young puberulous shoot, mature leaf sparsely puberulous abaxially and leaf base rounded or broadly obtuse, petiole and pedicel puberulous, tepals 12-13, ovary and style pubescent. The comparison between the new species and C. velutina and C. dormoyana is presented. Data on distribution, ecology, phenology, use and provisional conservation assessment of the new species are given along with an illustration and a colour plate.
Project description:Wuyi tea (Camellia. sinensis, Synonym: Thea Bohea L.) is recognized as the most prestigious oolong tea in China. For germplasm identification and protection, the complete chloroplast genomes of five classical Wuyi tea varieties were determined by next-generation sequencing. These chloroplast genomes showed highly conserved structures and are 157,024-157,126 bp in length, consisting of a pair of reverse repeats (IR) regions of 25,944-26,095 bp, one large single-copy (LSC) region of 86,594-86,859 bp, and one small single copy (SSC) region of 18,276-18,291 bp. A total of 137 genes were observed and overall GC contents were all about 37.3%. Phylogenetic analysis revealed Wuyi tea varieties did not cluster together, suggesting that these Wuyi tea varieties might have diverged early in their evolutionary history and the complete chloroplast genome could be used as a super-barcode to identify these varieties. This study will be valuable for future studies of evolution and intraspecific identification in Wuyi tea.
Project description:Tea-oil Camellia is one of the four woody oil crops in the world and has high ecological, economic and medicinal values. However, there are great differences in the classification and merging of tea-oil Camellia Sect. Oleifera species, which brings difficulties to the innovative utilization and production of tea-oil Camellia resources. Here, ISSR, SRAP and chloroplast sequence markers were analyzed in 18 populations of tea-oil Camellia Sect. Oleifera species to explore their phylogenetic relationships and genetic diversity. The results showed that their genetic diversity were low, with mean H and π values of 0.16 and 0.00140, respectively. There was high among-population genetic differentiation, with ISSR and SRAP markers showing an Fst of 0.38 and a high Nm of 1.77 and cpDNA markers showing an Fst of 0.65 and a low Nm of 0.27. The C. gauchowensis, C. vietnamensis and Hainan Island populations formed a single group, showing the closest relationships, and supported being the same species for them with the unifying name C. drupifera and classifying the resources on Hainan Island as C. drupifera. The tea-oil Camellia resources of Hainan Island should be classified as a special ecological type or variety of C. drupifera. However, cpDNA marker-based STRUCTURE analysis showed that the genetic components of the C. osmantha population formed an independent, homozygous cluster; hence, C. osmantha should be a new species in Sect. Oleifera. The C. oleifera var. monosperma and C. oleifera populations clustered into two distinct clades, and the C. oleifera var. monosperma populations formed an independent cluster, accounting for more than 99.00% of its genetic composition; however, the C. oleifera populations contained multiple different cluster components, indicating that C. oleifera var. monosperma significantly differs from C. oleifera and should be considered the independent species C. meiocarpa. Haplotype analysis revealed no rapid expansion in the tested populations, and the haplotypes of C. oleifera, C. meiocarpa and C. osmantha evolved from those of C. drupifera. Our results support the phylogenetic classification of Camellia subgenera, which is highly significant for breeding and production in tea-oil Camellia.
Project description:The subfamily Entiminae is the largest group in the family Curculionidae, and it has long represented a challenge in traditional and molecular classification. Here, we analyzed intra- and interspecific genetic distances of 621 public COI barcode sequences (658bp) from 39 genera and 110 species of Entiminae, to determine parameters most congruent in retaining established species. We found that the mean intraspecific genetic distance (3.07%) was much smaller than the mean interspecific one (21.96%), but there is a wide range of overlap between intra- and interspecific genetic distances (0.77−18.01%), indicating that there is no consistent, universal barcoding gap. Specifically, DNA barcoding gap analysis for morphospecies revealed that 102 of 110 morphospecies had barcoding gaps, and 9.18% was the optimum threshold of genetic distances for 97 species delimitation. We further confirmed this threshold with barcodes from 27 morphologically identified specimens (including 21 newly reported barcodes) sequenced from five genera and seven species. We also identified thresholds to delimit congeneric species within 14 selected genera (species > 2), which varied from 7.42% (Trichalophus) to 13.48% (Barypeithes). We herein present optimal parameters for species identification in the Entiminae. Our study suggests that despite no universal genetic distance threshold value in subfamily Entiminae, 9.18% is optimal for most species. We recommend a wider sampling of geographic populations to better account for intraspecific distance variation, and that genetic distance thresholds for species delimitation should be refined at the genus level.