Project description:Hemorrhagic diseases are common in dogs. Current coagulation assays do not model all aspects of in vivo hemostasis and may not predict bleeding risk. The Total-Thrombus Analysis System (T-TAS) is a novel hemostasis assay system in which whole blood flows through microfluidic channels at defined shear rates to provide qualitative and quantitative evaluation of platelet function (PL-chip) and coagulation function (AR-chip). The present study evaluated the T-TAS in dogs with hereditary bleeding disorders and with acquired hemorrhagic syndromes (Group 1), and healthy controls (Group 2). Hereditary defects included von Willebrand's disease (VWD; n = 4), hemophilia A (n = 2), and canine Scott syndrome (n = 2). Acquired hemorrhagic disorders included neoplastic hemoperitoneum (n = 2) and acute hemorrhagic diarrhea syndrome (n = 1). Citrate anticoagulated samples were collected from diseased dogs (Group 1, n = 11) and controls (Group 2, n = 11) for coagulation screening tests, fibrinogen analyses, D-dimer concentration, antithrombin activity, von Willebrand Factor antigen, PFA-100 closure time (PFA-CT), and thromboelastography (TEG). Citrate and hirudin anticoagulated samples were used for T-TAS analyses at two shear rates. Qualitative thrombus formation in each chip was recorded using the T-TAS video camera. Numeric parameters, derived from the instrument software, included occlusion start time (OST; time to 10 kPa), occlusion time (OT; time to 60 kPa (PL-chip) or 80 kPa (AR-chip)), and area under the pressure curve (AUC). Correlations between continuous variables were evaluated by Spearman's rank. Continuous variables were compared between groups by Student's t-test or the Mann-Whitney U-test. Alpha was set at 0.05. In combined analyses of all dogs, significant correlations were identified between T-TAS variables, between the PFA-CT and PL-chip parameters and between TEG variables and AR-chip parameters. The prothrombin time correlated with the AR-chip AUC at both shear rates. In Group 1 dogs, the AR-chip AUC at low shear was significantly reduced compared with Group 2 dogs. Aberrant thrombus formation was seen in video images recorded from dogs with VWD and hemophilia A. The T-TAS AR-chip analysis distinguished dogs with bleeding risk compared to healthy controls. Initial evaluations of the T-TAS suggest it may aid characterization of hemostasis in patients at-risk of bleeding and assist with delineating bleeding phenotypes.
Project description:Direct oral anticoagulants (DOACs) have low risk of intracranial hemorrhage compared to warfarin. We sought to clarify the different mechanisms responsible for suppression of bleeding events using the Total Thrombus-formation Analysis System (T-TAS), a flow-microchip chamber with thrombogenic surfaces. Blood samples were obtained at Off- and On-anticoagulant (trough) from 120 consecutive patients with atrial fibrillation (warfarin; n = 29, dabigatran; n = 19, rivaroxaban; n = 47, apixaban; n = 25), which were used for T-TAS to compute the area under the curve (AUC) (AR10-AUC30) in the AR chip, and to measure plasma concentrations of DOACs at On-anticoagulant. In addition, the two-dimensional area covered by thrombi (%) in the capillary was analyzed every 3 minutes after sample applications. The AR10-AUC30 correlated weakly and negatively with plasma concentrations of DOACs, and the levels at On-anticoagulant were lower in all groups than at Off-anticoagulant. AR10-AUC30 levels at Off- and On-anticoagulant were identical among the groups. The thrombi areas in early phase were significantly larger in rivaroxaban and apixaban than warfarin and dabigatran groups. The findings suggested that visual analysis of the AR-chip can identify the differential inhibitory patterns of warfarin and DOACs on thrombus formation under flow condition.
Project description:PurposeThe purpose of this study was to develop a software package for the automatic classification of anterior chamber angle using anterior segment optical coherence tomography (AS-OCT).MethodsAS-OCT images were collected from subjects with open, narrow, and closure anterior chamber angles, which were graded based on ultrasound biomicroscopy (UBM) results. The Inception version 3 network and the transfer learning technique were applied in the design of an algorithm for anterior chamber angle classification. The classification performance was evaluated by fivefold cross-validation and on an independent test dataset.ResultsThe proposed algorithm reached a sensitivity of 0.999 and specificity of 1.000 in the judgment of closed and nonclosed angles. The overall classification of the proposed method in open angle, narrow angle, and angle-closure classifications reached a sensitivity of 0.989 and specificity of 0.995. Additionally, the sensitivity and specificity reached 1.000 and 1.000 for angle-closure, 0.983 and 0.993 for narrow angle, and 0.985 and 0.991 for open angle.ConclusionsThe experimental results showed that the proposed method can achieve a high accuracy of anterior chamber angle classification using AS-OCT images, and could be of value in future practice.Translational relevanceThe proposed deep learning-based method that automate the classification of anterior chamber angle can facilitate clinical assessment of glaucoma.
Project description:We report the application of supervised machine learning to the automated classification of lipid droplets in label-free, quantitative-phase images. By comparing various machine learning methods commonly used in biomedical imaging and remote sensing, we found convolutional neural networks to outperform others, both quantitatively and qualitatively. We describe our imaging approach, all implemented machine learning methods, and their performance with respect to computational efficiency, required training resources, and relative method performance measured across multiple metrics. Overall, our results indicate that quantitative-phase imaging coupled to machine learning enables accurate lipid droplet classification in single living cells. As such, the present paradigm presents an excellent alternative of the more common fluorescent and Raman imaging modalities by enabling label-free, ultra-low phototoxicity, and deeper insight into the thermodynamics of metabolism of single cells.
Project description:Currently, the only widely accepted indication for thrombolysis in cases of pulmonary embolism is hemodynamic instability. However, the presence of a right-heart thrombus along with pulmonary embolism is a poor prognostic indicator, and the use of thrombolytic agents should also be considered in this circumstance. Furthermore, despite a risk of distal embolization, thrombolytic therapy may be implemented if the intracardiac thrombus also straddles a patent foramen ovale. Herein, we present the case of a 92-year-old woman who presented at our institution after a syncopal event and multiple recent episodes of amaurosis fugax. Transthoracic echocardiography revealed a mobile right-heart thrombus that extended through a patent foramen ovale into the left atrium. Computed tomography of the chest showed a saddle pulmonary embolus. We used thrombolytic therapy to treat the patient, and imaging showed complete resolution of the thrombus and the embolism 2 days later.
Project description:BackgroundThrombus formation is an important factor affecting cardiovascular events and venous thromboembolism in type 2 diabetes. However, it is unclear whether glycemic control reduces thrombogenicity. We investigated the effect of short-term glycemic control (STUDY 1) and hypoglycemia (STUDY 2) on thrombus formation using an automated microchip flow chamber system.MethodsFor STUDY 1, we recruited 10 patients with type 2 diabetes. Before and after 2 weeks of treatment, blood glucose was analyzed with a continuous glucose monitoring system, and thrombogenicity was analyzed with an automated microchip flow chamber system. For STUDY 2, we recruited 10 subjects without diabetes who underwent an insulin tolerance test. We evaluated the change in thrombogenic potential with hypoglycemia.ResultsSTUDY1: The mean blood glucose level reduced from 10.1 ± 2.6 to 6.9 ± 0.97 mM (P < 0.01). T10, an indicator of thrombogenicity, significantly attenuated after glycemic control (338 ± 65 vs. 425 ± 117 s, P < 0.05). The attenuation in T10 was significantly correlated with changes in mean blood glucose level after treatment (r = - 0.718, P < 0.05). STUDY 2: Platelet function was enhanced with decreasing blood glucose; increased platelet function was strongly correlated with an increase in epinephrine.ConclusionsWe demonstrated attenuation in thrombogenicity with short-term comprehensive diabetes care and enhancement in thrombogenicity with hypoglycemia, using a new flow chamber system.Trial registrationUMIN-CTR UMIN 000019899, registered 26-Jan-2015 (STUDY 2).
Project description:BACKGROUND:Oral cancer is one of the most common diseases globally. Conventional oral examination and histopathological examination are the two main clinical methods for diagnosing oral cancer early. VELscope is an oral cancer-screening device that exploited autofluorescence. It yields inconsistent results when used to differentiate between normal, premalignant and malignant lesions. We develop a new method to increase the accuracy of differentiation. MATERIALS AND METHODS:Five samples (images) of each of 21 normal mucosae, as well as 31 premalignant and 16 malignant lesions of the tongue and buccal mucosa were collected under both white light and autofluorescence (VELscope, 400-460 nm wavelength). The images were developed using an iPod (Apple, Atlanta Georgia, USA). RESULTS:The normalized intensity and standard deviation of intensity were calculated to classify image pixels from the region of interest (ROI). Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) classifiers were used. The performance of both of the classifiers was evaluated with respect to accuracy, precision, and recall. These parameters were used for multiclass classification. The accuracy rate of LDA with un-normalized data was increased by 2% and 14% and that of QDA was increased by 16% and 25% for the tongue and buccal mucosa, respectively. CONCLUSION:The QDA algorithm outperforms the LDA classifier in the analysis of autofluorescence images with respect to all of the standard evaluation parameters.
Project description:Methanococcus maripaludis is a methanogenic archaeon. Within its genome, there are two operons for membrane associated hydrogenases, eha and ehb. To investigate the regulation of ehb on the cell, an S40 mutant was constructed in such a way that a portion of the ehb operon was replaced by pac cassette in the wild type parental strain S2 (done by Whitman's group at the University of Georgia). The S40 and S2 strains were grown in 14N and 15N media with acetate separately. A biological replicate was made by switching the media. Mass spectrometry based quantitative proteomics were done on the mixtures to investigate the differences in expression patterns between S40 and S2. Keywords: isotope labeling mass spectrometry, quantitative proteomics
Project description:For a number of years it has been widely assumed that measurement of serum 25-hydroxyvitamin D [25(OH)D] concentration is the best approach to assessing an individual's vitamin D status. However, it has also been recognized that there is substantial within-assay variation in 25(OH)D measurement and even greater between-assay variability. Such assay variation clearly confounds attempts to define what constitutes the diagnosis of hypovitaminosis D. Importantly, assay variability makes pooling of 25(OH)D results from different studies in systematic reviews for the specific purpose of determining dose-response and/or clinical cut points at best problematic. Therefore, to develop and implement evidence-based clinical guidelines, it is essential that 25(OH)D measurement be standardized in both clinical and research laboratories. In this Perspective we outline a way forward toward achieving this goal-the Vitamin D Standardization Program (VDSP).
Project description:Leprosy is a debilitating, infectious disease caused by Mycobacterium leprae. Despite the availability of multidrug therapy, transmission is unremitting. Thus, early identification of M. leprae infection is essential to reduce transmission. The immune response to M. leprae is determined by host genetics, resulting in paucibacillary (PB) and multibacillary (MB) leprosy associated with dominant cellular or humoral immunity, respectively. This spectral pathology of leprosy compels detection of immunity to M. leprae to be based on multiple, diverse biomarkers. In this study we have applied quantitative user friendly lateral flow assays (LFAs) for four immune markers (anti-PGL-I antibodies, IL-10, CCL4 and IP-10) for whole blood samples from a longitudinal BCG vaccination field-trial in Bangladesh. Different biomarker profiles, in contrast to single markers, distinguished M. leprae infected from non-infected test groups, patients from household contacts (HHC) and endemic controls (EC), or MB from PB patients. The test protocol presented in this study merging detection of innate, adaptive cellular as well as humoral immunity, thus provides a convenient tool to measure specific biomarker profiles for M. leprae infection and leprosy utilizing a field-friendly technology.