Project description:In order to assess the dynamics of influenza virus infection in pigs, serological and virological follow-ups were conducted in two whole batches of pigs from two different farms (F1 and F2), from 3 weeks of age until market age. Anti-swine influenza virus (SIV) antibodies (measured by ELISA and hemagglutination inhibition) and nasal virus shedding (measured by RRT-PCR and isolation in embryonated chicken eggs and MDCK cells) were carried out periodically. SIV isolates were subtyped and hemagglutinin and neuraminidase genes were partially sequenced and analyzed phylogenetically. In F1, four waves of viral circulation were detected, and globally, 62/121 pigs (51.2%) were positive by RRT-PCR at least once. All F1 isolates corresponded to H1N1 subtype although hemagglutination inhibition results also revealed the presence of antibodies against H3N2. The first viral wave took place in the presence of colostral-derived antibodies. Nine pigs were positive in two non-consecutive sampling weeks, with two of the animals being positive with the same isolate. Phylogenetic analyses showed that different H1N1 variants circulated in that farm. In F2, only one isolate, H1N2, was detected and all infections were concentrated in a very short period of time, as assumed for a classic influenza outbreak. These findings led us to propose that influenza virus infection in pigs might present different patterns, from an epidemic outbreak to an endemic form with different waves of infections with a lower incidence.
Project description:Influenza A virus (IAV) in swine, so-called swine influenza A virus (swIAV), causes respiratory illness in pigs around the globe. In Danish pig herds, a H1N2 subtype named H1N2dk is one of the main circulating swIAV. In this cohort study, the infection dynamic of swIAV was evaluated in a Danish pig herd by sampling and PCR testing of pigs from two weeks of age until slaughter at 22 weeks of age. In addition, next generation sequencing (NGS) was used to identify and characterize the complete genome of swIAV circulating in the herd, and to examine the antigenic variability in the antigenic sites of the virus hemagglutinin (HA) and neuraminidase (NA) proteins. Overall, 76.6% of the pigs became PCR positive for swIAV during the study, with the highest prevalence at four weeks of age. Detailed analysis of the virus sequences obtained showed that the majority of mutations occurred at antigenic sites in the HA and NA proteins of the virus. At least two different H1N2 variants were found to be circulating in the herd; one H1N2 variant was circulating at the sow and nursery sites, while another H1N2 variant was circulating at the finisher site. Furthermore, it was demonstrated that individual pigs had recurrent swIAV infections with the two different H1N2 variants, but re-infection with the same H1N2 variant was also observed. Better understandings of the epidemiology, genetic and antigenic diversity of swIAV may help to design better health interventions for the prevention and control of swIAV infections in the herds.
Project description:To clarify the epidemiology of influenza A viruses in coordinated swine production systems to which no animals from outside the system are introduced, we conducted virologic surveillance during September 2012-September 2013. Animal age, geographic location, and farm type were found to affect the prevalence of these viruses.
Project description:Swine harbor genetically diverse influenza A viruses (IAVs) with the capacity to host-switch to humans, causing global pandemics. Spain is the largest swine producer in Europe and has a mixed production system that includes 'white coat' pigs raised intensively in modern buildings and free-range Iberian pigs that interface differently with humans, wildlife, and other swine. Through active longitudinal IAV surveillance in nine Spanish provinces during 2015-9, we generated forty-seven complete or near-complete genome sequences from IAVs collected from swine in both systems. Genetically diverse IAVs were identified in intensively raised white pigs and free-range Iberian pigs, including new H3N1 reassortants. Both systems are dynamic environments for IAV evolution, but driven by different processes. IAVs in white pigs were genetically related to viruses found in swine raised intensively in other European countries, reflecting high rates of viral introduction following European trade routes. In contrast, IAVs in Iberian pigs have a genetic makeup shaped by frequent introductions of human IAVs, reflecting rearing practices with high rates of human contact. Transmission between white and Iberian pigs also occurred. In conclusion, Iberian swine with high rates of human contact harbor genetically diverse IAVs and potentially serve as intermediary hosts between white pigs and humans, presenting an understudied zoonotic risk that requires further investigation.
Project description:Analysis of gene expression in the lungs of pigs from high and low litter birth weight groups (HBW and LBW) inoculated with swine influenza virus. The aim of the experiment is to determine whether litter birth weight has an effect on the innate immune response to infection in pigs, and whether differences in gene expression can be linked to epigenetic differences between the two birth weight groups.
Project description:Background Swine can harbor influenza viruses that are pathogenic to humans. Previous studies support an increased risk of human influenza cases among individuals with swine contact. North Carolina has the second-largest swine industry in the United States.Methods We investigated the spatiotemporal association between influenza-like illnesses (ILIs) and licensed swine operations from 2008 to 2012 in North Carolina. We determined the week in which ILI cases peaked and statistically estimated their week of onset. This was performed for all 100 North Carolina counties for 4 consecutive influenza seasons. We used linear models to correlate the number of permitted swine operations per county with the weeks of onset and peak ILI activity.Results We found that during the 2009-2010 and 2010-2011 influenza seasons, both seasons in which the pandemic 2009 H1N1 influenza A virus circulated, ILI peaked earlier in counties with a higher number of licensed swine operations. We did not observe this in 2008-2009 or 2011-2012, nor did we observe a relationship between ILI onset week and number of swine operations.Conclusions Our findings suggest that concentrated swine feeding operations amplified transmission of influenza during years in which H1N1 was circulating. This has implications for vaccine strategies targeting swine workers, as well as virologic surveillance in areas with large concentrations of swine.
Project description:Analysis of gene expression in the lungs of pigs from high and low litter birth weight groups (HBW and LBW) inoculated with swine influenza virus. The aim of the experiment is to determine whether litter birth weight has an effect on the innate immune response to infection in pigs, and whether differences in gene expression can be linked to epigenetic differences between the two birth weight groups. A two condition experiment: lung tissue RNA from HBW and LBW SIV-infected pigs. 16 biological replicates for each condition, each hybridized with a reference to separate arrays. 32 arrays in total.
Project description:Swine influenza viruses (SIV) produce a highly contagious and worldwide distributed disease that can cause important economic losses to the pig industry. Currently, this virus is endemic in farms and, although used limitedly, trivalent vaccine application is the most extended strategy to control SIV. The presence of pre-existing immunity against SIV may modulate the evolutionary dynamic of this virus. To better understand these dynamics, the viral variants generated in vaccinated and nonvaccinated H3N2 challenged pigs after recovery from a natural A(H1N1) pdm09 infection were determined and analyzed. In total, seventeen whole SIV genomes were determined, 6 from vaccinated, and 10 from nonvaccinated animals and their inoculum, by NGS. Herein, 214 de novo substitutions were found along all SIV segments, 44 of them being nonsynonymous ones with an allele frequency greater than 5%. Nonsynonymous substitutions were not found in NP; meanwhile, many of these were allocated in PB2, PB1, and NS1 proteins. Regarding HA and NA proteins, higher nucleotide diversity, proportionally more nonsynonymous substitutions with an allele frequency greater than 5%, and different domain allocations of mutants, were observed in vaccinated animals, indicating different evolutionary dynamics. This study highlights the rapid adaptability of SIV in different environments.
Project description:Pigs play an important role in interspecies transmission of the influenza virus, particularly as "mixing vessels" for reassortment. Two influenza A/H1N1 virus strains, A/swine/Siberia/1sw/2016 and A/swine/Siberia/4sw/2017, were isolated during a surveillance of pigs from private farms in Russia from 2016 to 2017. There was a 10% identity difference between the HA and NA nucleotide sequences of isolated strains and the most phylogenetically related sequences (human influenza viruses of 1980s). Simultaneously, genome segments encoding internal proteins were found to be phylogenetically related to the A/H1N1pdm09 influenza virus. In addition, two amino acids (129-130) were deleted in the HA of A/swine/Siberia/4sw/2017 compared to that of A/swine/Siberia/1sw/2016 HA.