Project description:Peste des petits ruminants virus (PPRV) is an important agent of contagious, acute and febrile viral diseases in small ruminants, while its evolutionary dynamics related to codon usage are still lacking. Herein, we adopted information entropy, the relative synonymous codon usage values and similarity indexes and codon adaptation index to analyze the viral genetic features for 45 available whole genomes of PPRV. Some universal, lineage-specific, and gene-specific genetic features presented by synonymous codon usages of the six genes of PPRV that encode N, P, M, F, H and L proteins reflected evolutionary plasticity and independence. The high adaptation of PPRV to hosts at codon usages reflected high viral gene expression, but some synonymous codons that are rare in the hosts were selected in high frequencies in the viral genes. Another obvious genetic feature was that the synonymous codons containing CpG dinucleotides had weak tendencies to be selected in viral genes. The synonymous codon usage patterns of PPRV isolated during 2007-2008 and 2013-2014 in China displayed independent evolutionary pathway, although the overall codon usage patterns of these PPRV strains matched the universal codon usage patterns of lineage IV. According to the interplay between nucleotide and synonymous codon usages of the six genes of PPRV, the evolutionary dynamics including mutation pressure and natural selection determined the viral survival and fitness to its host.
Project description:Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants.
Project description:BackgroundPeste des petits ruminants (PPR) is an endemic and highly contagious disease in small ruminants of Pakistan. Despite the fact that an effective vaccine is available, outbreaks are regularly occurring in the country. Thus so far, the diagnosis has primarily been made based on clinical outcome or serology. This study was carried out to characterize PPRV from an emerging wave of outbreaks from Punjab, Pakistan.ResultsA total of 32 blood samples from five different flocks were tested with real-time PCR for the presence of PPRV genome. The samples detected positive in real-time PCR (n = 17) were subjected to conventional PCR for the amplification of the nucleoprotein (N) gene. Phylogenetic analysis of the sequenced N genes (n = 8) indicated the grouping of all the sequences in lineage IV along with PPRV strains from Asian and Middle East. However, interestingly sequences were divided into two groups. One group of viruses (n = 7) clustered with previously characterized Pakistani isolates whereas one strain of PPRV was distinct and clustered with Saudi Arabian and Iranian strains of PPRV.ConclusionsResults demonstrated in this study expanded the information on the genetic nature of different PPRV population circulating in small ruminants. Such information is essential to understand genetic nature of PPRV strains throughout the country. Proper understanding of these viruses will help to devise control strategies in PPRV endemic countries such as Pakistan.
Project description:Serologic and molecular evidence indicates that peste des petits ruminants virus (PPRV) infection has emerged in goats and sheep in the Ngari region of southwestern Tibet, People's Republic of China. Phylogenetic analysis confirms that the PPRV strain from Tibet is classified as lineage 4 and is closely related to viruses currently circulating in neighboring countries of southern Asia.