Project description:Physiologically driven coronary revascularization has been shown to be superior in terms of better outcomes and optimum resource utilization for percutaneous interventions. However, its applicability to surgical myocardial revascularization lacks evidence base. GRAFITTI Trial aims at bridging this gap and Dr. F Casselman discusses its rationale and design.
Project description:Recent advances in image-based modeling and computational fluid dynamics permit the calculation of coronary artery pressure and flow from typically acquired coronary computed tomography (CT) scans. Computed fractional flow reserve is the ratio of mean coronary artery pressure divided by mean aortic pressure under conditions of simulated maximal coronary hyperemia, thus providing a noninvasive estimate of fractional flow reserve (FFRCT) at every point in the coronary tree. Prospective multicenter clinical trials have shown that computed FFRCT improves diagnostic accuracy and discrimination compared to CT stenosis alone for the diagnosis of hemodynamically significant coronary artery disease (CAD), when compared to invasive FFR as the reference gold standard. This promising new technology provides a combined anatomic and physiologic assessment of CAD in a single noninvasive test that can help select patients for invasive angiography and revascularization or best medical therapy. Further evaluation of the clinical effectiveness and economic implications of noninvasive FFRCT are now being explored.
Project description:Fractional flow reserve derived from CT is a rapidly developing technique, with an increasing burden of literature supporting its potential role in the workup of patients suspected of having coronary artery disease.
Project description:Invasive fractional flow reserve (FFR) is the gold standard to assess the functional coronary stenosis. The non-invasive assessment of diameter stenosis (DS) using coronary computed tomography angiography (CTA) has high false positive rate in contrast to FFR. Combining CTA with computational fluid dynamics (CFD), recent studies have shown promising predictions of FFRCT for superior assessment of lesion severity over CTA alone. The CFD models tend to be computationally expensive, however, and require several hours for completing analysis. Here, we introduce simplified models to predict noninvasive FFR at substantially less computational time. In this retrospective pilot study, 21 patients received coronary CTA. Subsequently a total of 32 vessels underwent invasive FFR measurement. For each vessel, FFR based on steady-state and analytical models (FFRSS and FFRAM, respectively) were calculated non-invasively based on CTA and compared with FFR. The accuracy, sensitivity, specificity, positive predictive value and negative predictive value were 90.6% (87.5%), 80.0% (80.0%), 95.5% (90.9%), 88.9% (80.0%) and 91.3% (90.9%) respectively for FFRSS (and FFRAM) on a per-vessel basis, and were 75.0%, 50.0%, 86.4%, 62.5% and 79.2% respectively for DS. The area under the receiver operating characteristic curve (AUC) was 0.963, 0.954 and 0.741 for FFRSS, FFRAM and DS respectively, on a per-patient level. The results suggest that the CTA-derived FFRSS performed well in contrast to invasive FFR and they had better diagnostic performance than DS from CTA in the identification of functionally significant lesions. In contrast to FFRCT, FFRSS requires much less computational time.
Project description:BackgroundCoronary computed tomography angiography-derived fractional flow reserve (FFRCT) is a per-vessel index reflecting cumulative hemodynamic burden while coronary events occur in focal lesions.ObjectivesThe authors sought to evaluate the additive prognostic value of the local gradient of FFRCT (FFRCT gradient) in addition to FFRCT to predict future coronary events.MethodsThe current study included 245 patients (634 vessels) who underwent coronary computed tomography angiography within 6 to 36 months before the index angiography, of which 209 vessels had future coronary events and 425 vessels did not. Future coronary events were defined as a composite of vessel-specific myocardial infarction or urgent revascularization during a mean interval of 1.5 years. Pre-existing disease patterns were classified according to FFRCT of ≤0.80 and FFRCT gradient of ≥0.025/mm.ResultsBoth FFRCT (per 0.01 decrease; adjusted HR: 1.040; 95% CI: 1.029-1.051; P < 0.001) and FFRCT gradient (per 0.01 increase; adjusted HR: 1.144; 95% CI: 1.101-1.190; P < 0.001) were significantly associated with the risk of future coronary events. Lesions with FFRCT gradient of ≥0.025/mm showed significantly higher risk of future coronary events than those with FFRCT gradient of <0.025/mm in both the FFRCT >0.80 (49.2% vs 30.1%; HR: 2.069; 95% CI: 1.265-3.385; P = 0.004) and FFRCT ≤0.80 groups (60.9% vs 38.3%; HR: 1.988; 95% CI: 1.317-2.999; P =0 .001). Adding FFRCT gradient into the model with FFRCT alone showed significantly increased predictability of future coronary events (global chi-square: 45.8 vs 39.9; P = 0.015).ConclusionsPatients with high FFRCT gradient showed increased risk of future coronary events irrespective of FFRCT. Integrating both FFRCT and FFRCT gradient showed incremental predictability of future coronary events compared with FFRCT alone. (Prediction and Validation of Clinical Course of Coronary Artery Disease With CT-Derived Non-Invasive Hemodynamic Phenotyping and Plaque Characterization [DESTINY Study]; NCT04794868).
Project description:The aim of this study was to evaluate a new analytical method for calculating non-invasive fractional flow reserve (FFRAM) to diagnose ischemic coronary lesions. Patients with suspected or known coronary artery disease (CAD) who underwent computed tomography coronary angiography (CTCA) and invasive coronary angiography (ICA) with FFR measurements from two sites were prospectively recruited. Obstructive CAD was defined as diameter stenosis (DS) ≥50% on CTCA or ICA. FFRAM was derived from CTCA images and anatomical features using analytical method and was compared with computational fluid dynamics (CFD)-based FFR (FFRB) and invasive ICA-based FFR. FFRAM, FFRB, and invasive FFR ≤ 0.80 defined ischemia. A total of 108 participants (mean age 60, range: 30-83 years, 75% men) with 169 stenosed coronary arteries were analyzed. The per-vessel accuracy, sensitivity, specificity, and positive predictive and negative predictive values were, respectively, 81, 75, 86, 81, and 82% for FFRAM and 87, 88, 86, 83, and 90% for FFRB. The area under the receiver operating characteristics curve for FFRAM (0.89 and 0.87) and FFRB (0.90 and 0.86) were higher than both CTCA- and ICA-derived DS (all p < 0.0001) on per-vessel and per-patient bases for discriminating ischemic lesions. The computational time for FFRAM was much shorter than FFRB (2.2 ± 0.9 min vs. 48 ± 36 min, excluding image acquisition and segmentation). FFRAM calculated from a novel and expeditious non-CFD approach possesses a comparable diagnostic performance to CFD-derived FFRB, with a significantly shorter computational time.
Project description:BackgroundAdding functional information by CT-derived fractional flow reserve (FFRct) to coronary CT angiography (CCTA) and assessing its temporal change may provide insight into the natural history and physiopathology of cardiac allograft vasculopathy (CAV) in heart transplantation (HTx) patients. We assessed FFRct changes as well as CAV progression over a 2-year period in HTx patients undergoing serial CT imaging.MethodsHTx patients from Erasmus MC and Mount Sinai Hospital, who had consecutive CCTAs 2 years apart were evaluated. FFRct analysis was performed for both scans. FFRct values at the most distal point in the left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA) were measured after precisely matching the anatomical locations in both analyses. Also, the number of anatomical coronary stenoses of > 30% was scored.ResultsIn total, 106 patients (median age 57 [interquartile range 47-67] years, 67% male) at 9 [6-13] years after HTx at the time of the baseline CCTA were included. Median distal FFRct values significantly decreased from baseline to follow-up for the LAD from 0.85 [0.79-0.90] to 0.84 [0.76-0.90] (p = 0.001), LCX from 0.92 [0.88-0.96] to 0.91 [0.85-0.95] (p = 0.009), and RCA from 0.92 [0.86-0.95] to 0.90 [0.86-0.94] (p = 0.004). The number of focal anatomical stenoses of > 30% increased from a median of 1 [0-2] at baseline to 2 [0-3] at follow-up (p = 0.009).ConclusionsThe distal coronary FFRct values in post-HTX patients in each of the three major coronary arteries decreased, and the number of focal coronary stenoses increased over a 2-year period. Temporal FFRct change rate may become an additional parameter in the follow-up of HTx patients, but more research is needed to elucidate its role.Clinical relevance statementCT-derived fractional flow reserve (FFRct) is important post-heart transplant because of additional information on coronary CT angiography for cardiac allograft vasculopathy (CAV) detection. The decrease and degree of reduction in distal FFRct value may indicate progression in anatomic CAV burden.Key pointsCT-derived fractional flow reserve (FFRct) is important for monitoring cardiac allograft vasculopathy (CAV) in heart transplant patients. Over time, transplant patients showed a decrease in distal FFRct and an increase in coronary stenoses. Temporal changes in FFRct could be crucial for transplant follow-up, aiding in CAV detection.
Project description:BackgroundThe instantaneous wave-free ratio (iFR) is a novel method to assess the ischemic potential of coronary artery stenoses. Clinical trial data have shown that iFR has acceptable diagnostic agreement with fractional flow reserve (FFR), the reference standard for the functional assessment of coronary stenoses. This study compares iFR measurements with FFR measurements in a real world, single-center setting.Methods and resultsInstantaneous wave-free ratio and FFR were measured in 50 coronary artery lesions in 42 patients, with FFR ≤ 0.8 classified as functionally significant. An iFR-only technique, using a treatment cut-off value, iFR ≤ 0.89, provided a classification agreement of 84% with FFR ≤ 0.80. Use of a hybrid iFR-FFR technique, incorporating FFR measurement for lesions within the iFR gray zone of 0.86-0.93, would improve classification agreement with FFR to 94%, with diagnosis achieved without the need for hyperemia in 57% patients.ConclusionThis study in a real-world setting demonstrated good classification agreement between iFR and FFR. Use of a hybrid iFR-FFR technique would achieve high diagnostic accuracy while minimizing adenosine use, compared with routine FFR.
Project description:BackgroundComputed tomography fractional flow reserve (CT-FFR), which can be acquired on-site workstation using fluid structure interaction during the multiple optimal diastolic phase, has an incremental diagnostic value over conventional coronary computed tomography angiography (CCTA). However, the appropriate location for CT-FFR measurement remains to be clarified.MethodA total of 115 consecutive patients with 149 vessels who underwent CCTA showing 30-90% stenosis with invasive FFR within 90 days were retrospectively analyzed. CT-FFR values were measured at three points: 1 and 2 cm distal to the target lesion (CT-FFR1cm, 2cm) and the vessel terminus (CT-FFRlowest). The diagnostic accuracies of CT-FFR ≤ 0.80 for detecting hemodynamically significant stenosis, defined as invasive FFR ≤ 0.80, were compered.ResultFifty-five vessels (36.9%) had invasive FFR ≤ 0.80. The accuracy and AUC for CT-FFR1cm and 2cm were comparable, while the AUC for CT-FFRlowest was significantly lower than CT-FFR1cm and 2cm. (lowest/1cm, 2 cm = 0.68 (95 %CI 0.63-0.73) vs 0.79 (0.72-0.86, p = 0.006), 0.80 (0.73-0.87, p = 0.002)) The sensitivity and negative predictive value of CT-FFRlowest were 100%. The reclassification rates from positive CT-FFRlowest to negative CT-FFR1cm and 2cm were 55.7% and 54.2%, respectively.ConclusionThe diagnostic performance of CT-FFR was comparable when measured at 1-to-2 cm distal to the target lesion, but significantly higher than CT-FFRlowest. The lesion-specific CT-FFR could reclassify false positive cases in patients with positive CT-FFRlowest, while all patients with negative CT-FFRlowest were diagnosed as negative by invasive FFR.