Project description:We have synthesized the first isolable geminal bisenolates L2 K2 Ge[(CO)R]2 (R=2,4,6-trimethylphenyl (2 a,b), L=THF for (2 a) or [18]-crown-6 for (2 b)), a new synthon for the synthesis of organometallic reagents. The formation of these derivatives was confirmed by NMR spectroscopy and X-ray crystallographic analysis. The UV/Vis spectra of these anions show three distinct bands, which were assigned by DFT calculations. The efficiency of 2 a,b to serve as new building block in macromolecular chemistry is demonstrated by the reactions with two different types of electrophiles (acid chlorides and alkyl halides). In all cases the salt metathesis reaction gave rise to novel Ge-based photoinitiators in good yields.
Project description:Tricarbonylrhenium(I)(α-diimine) complexes are of importance because of their strong cytotoxic and fluorescence properties. Syntheses of such complexes were achieved through a two-step process. First, the pentylcarbonato complexes, fac-(CO)3(α-diimine)ReOC(O)OC5H11 were synthesized through a microwave-assisted reaction of Re2(CO)10, α-diimine, 1-pentanol and CO2 in a few hours. Second, the pentylcarbonato complexes are treated with carboxylic, sulfonic and halo acids to obtain the corresponding carboxylato, sulfonato and halido complexes. This is the first example of conversion of Re2(CO)10 into a rhenium carbonyl complex through microwave-assisted reaction.
Project description:Secondary phosphines are important building blocks in organic chemistry as their reactive P-H bond enables construction of more elaborate molecules. In particular, they can be used to construct tertiary phosphines that have widespread applications as organocatalysts, and as ligands in metal-complex catalysis. We report here a practical synthesis of the bulky secondary phosphine synthon 2,2,6,6-tetramethylphosphinane (TMPhos). Its nitrogen analogue tetramethylpiperidine, known for over a century, is used as a base in organic chemistry. We obtained TMPhos on a multigram scale from an inexpensive air-stable precursor, ammonium hypophosphite. TMPhos is also a close structural relative of di-tert-butylphosphine, a key component of many important catalysts. Herein we also describe the synthesis of key derivatives of TMPhos, with potential applications ranging from CO2 conversion to cross-coupling and beyond. The availability of a new core phosphine building block opens up a diverse array of opportunities in catalysis.
Project description:The ligand chemistry of colloidal semiconductor nanocrystals mediates their solubility, band gap, and surface facets. Here, selective organometallic chemistry is used to prepare small, colloidal cuprous oxide nanocrystals and to control their surface chemistry by decorating them with metal complexes. The strategy is demonstrated using small (3-6 nm) cuprous oxide (Cu2O) colloidal nanocrystals (NC), soluble in organic solvents. Organometallic complexes are coordinated by reacting the surface Cu-OH bonds with organometallic reagents, M(C6F5)2, M = Zn(II) and Co(II), at room temperature. These reactions do not disrupt the Cu2O crystallinity or nanoparticle size; rather, they allow for the selective coordination of a specific metal complex at the surface. Subsequently, the surface-coordinated organometallic complex is reacted with three different carboxylic acids to deliver Cu-O-Zn(O2CR') complexes. Selective nanocrystal surface functionalization is established using spectroscopy (IR, 19F NMR), thermal gravimetric analyses (TGA), transmission electron microscopy (TEM, EELS), and X-ray photoelectron spectroscopy (XPS). Photoluminescence efficiency increases dramatically upon organometallic surface functionalization relative to that of the parent Cu2O NC, with the effect being most pronounced for Zn(II) decoration. The nanocrystal surfaces are selectively functionalized by both organic ligands and well-defined organometallic complexes; this synthetic strategy may be applicable to many other metal oxides, hydroxides, and semiconductors. In the future, it should allow NC properties to be designed for applications including catalysis, sensing, electronics, and quantum technologies.
Project description:Assembly of interacting molecular spins is an attractive candidate for spintronic and quantum computing devices. Here, we report on-surface chemical assembly of aminoferrocene molecules on a graphene oxide (GO) sheet and their magnetic properties. On the GO surface, organometallic molecules having individual spins through charge transfer between the molecule and the sheet are arranged in nanoclusters having diameters of about 2 nm. The synthetic fine tuning of the reaction time enables to change the interspacing between the nanoclusters, keeping their size intact. Their magnetism changes from paramagnetic behavior to collective one gradually as the interspacing decreases. The creation of collective nature among weakly interacting molecular spins through their nanoscale arrangement on the GO surface opens a new avenue to molecular magnetism.
Project description:An osmathiazole skeleton has been generated starting from the cation of the salt [OsH(OH)(≡CPh)(IPr)(PiPr3)]OTf (1; IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolylidene; OTf = CF3SO3) and thioacetamide; its aromaticity degree was compared with that of thiazole, and its aromatic reactivity was confirmed through a reaction with phenylacetylene. Salt 1 reacts with the thioamide to initially afford the synthetic intermediate [OsH{κ2-N,S-[NHC(CH3)S]}(≡CPh)(IPr)(PiPr3)]OTf (2). Thioamidate and alkylidyne ligands of 2 couple in acetonitrile at 70 °C, forming a 1:1 mixture of the salts [OsH{κ2-C,S-[C(Ph)NHC(CH3)S]}(CH3CN)(IPr)(PiPr3)]OTf (3) and [Os{κ2-C,S-[CH(Ph)NHC(CH3)S]}(CH3CN)3(IPr)]OTf (4). Treatment of 3 with potassium tert-butoxide produces the NH-deprotonation of its five-membered ring and gives OsH{κ2-C,S-[C(Ph)NC(CH3)S]}(IPr)(PiPr3) (5). The osmathiazole ring of 5 is slightly less aromatic than the osmathiazolium cycle of 3 and the purely organic thiazole. However, it is more aromatic than related osmaoxazoles and osmaoxazoliums. There are significant differences in behavior between 3 and 5 toward phenylacetylene. In acetonitrile, the cation of 3 loses the phosphine and adds the alkyne to afford [Os{η3-C3,κ1-S-[CH2C(Ph)C(Ph)NHC(CH3)S]}(CH3CN)2(IPr)]OTf (6), bearing a functionalized allyl ligand. In contrast, the osmathiazole ring of 5 undergoes a vicarious nucleophilic substitution of hydride, by acetylide, via the dihydride OsH2(C≡CPh){κ2-C,S-[C(Ph)NC(CH3)S]}(IPr)(PiPr3) (7), which releases H2 to yield Os(C≡CPh){κ2-C,S-[C(Ph)NC(CH3)S]}(IPr)(PiPr3) (8).
Project description:Diels-Alder cycloaddition of 10 followed by Wittig homologation and intramolecular diene cyclozirconation of the resulting triene under equilibrating conditions led to the tricyclic 6-6-5 ketone 5 with high diastereocontrol. The derived alpha-azido ketone 16 cyclized efficiently to the heptacyclic pyrazine core of ritterazine N.
Project description:Metalation of secondary diaminophosphine boranes by alkali metal amides provides a robust and selective access route to a range of metal diaminophosphide boranes M[(R2 N)2 P(BH3 )] (M=Li, Na, K; R=alkyl, aryl) with acyclic or heterocyclic molecular backbones, whereas reduction of a chlorodiaminophosphine borane gave less satisfactory results. The metalated species were characterized in situ by NMR spectroscopy and in two cases isolated as crystalline solids. Single-crystal XRD studies revealed the presence of salt-like structures with strongly interacting ions. Synthetic applications of K[(R2 N)2 P(BH3 )] were studied in reactions with a 1,2-dichlorodisilane and CS2 , which afforded either mono- or difunctional phosphine boranes with a rare combination of electronegative amino and electropositive functional disilanyl groups on phosphorus, or a phosphinodithioformate. Spectroscopic studies gave a first hint that removal of the borane fragment may be feasible.
Project description:The reactions of isolable dialkylsilylene 1 with aromatic acyl chlorides afforded aroylsilanes 3a-3c exclusively. Aroylsilanes 3a-3c were characterized by ¹H-, 13C-, and 29Si-NMR spectroscopy, high-resolution mass spectrometry (HRMS), and single-crystal molecular structure analysis. The reaction mechanisms are discussed in comparison with related reaction of 1 with chloroalkanes and chlorosilanes.
Project description:Since its early days, olefin metathesis has been in the focus of scientific discussions and technology development. While heterogeneous olefin metathesis catalysts based on supported group 6 metal oxides have been used for decades in the petrochemical industry, detailed mechanistic studies and the development of molecular organometallic chemistry have led to the development of robust and widely used homogeneous catalysts based on well-defined alkylidenes that have found applications for the synthesis of fine and bulk chemicals and are also used in the polymer industry. The development of the chemistry of high-oxidation group 5-7 alkylidenes and the use of surface organometallic chemistry (SOMC) principles unlocked the preparation of so-called well-defined supported olefin metathesis catalysts. The high activity and stability (often superior to their molecular analogues) and molecular-level characterisation of these systems, that were first reported in 2001, opened the possibility for the first direct structure-activity relationships for supported metathesis catalysts. This review describes first the history of SOMC in the field of olefin metathesis, and then focuses on what has happened since 2007, the date of our last comprehensive reviews in this field.