Project description:Herein we disclose a mild protocol for the reductive functionalisation of quinolinium and isoquinolinium salts. The reaction proceeds under transition-metal-free conditions as well as under rhodium catalysis with very low catalyst loadings (0.01 mol %) and uses inexpensive formic acid as the terminal reductant. A wide range of electrophiles, including enones, imides, unsaturated esters and sulfones, β-nitro styrenes and aldehydes are intercepted by the in situ formed enamine species forming a large variety of substituted tetrahydro(iso)quinolines. Electrophiles are incorporated at the C-3 and C-4 position for quinolines and isoquinolines respectively, providing access to substitution patterns which are not favoured in electrophilic or nucleophilic aromatic substitution. Finally, this reactivity was exploited to facilitate three types of annulation reactions, giving rise to complex polycyclic products of a formal [3+3] or [4+2] cycloaddition.
Project description:Photochemical dearomative cycloaddition has emerged as a useful strategy to rapidly generate molecular complexity. Within this context, stereo- and regiocontrolled intermolecular para-cycloadditions are rare. Herein, a method to achieve photochemical cycloaddition of quinolines and alkenes is shown. Emphasis is placed on generating sterically congested products and reaction of highly substituted alkenes and allenes. In addition, the mechanistic details of the process are studied, which revealed a reversible radical addition and a selectivity-determining radical recombination. The regio- and stereochemical outcome of the reaction is also rationalized.
Project description:We report herein a visible light-mediated C-H hydroxyalkylation of quinolines and isoquinolines that proceeds via a radical path. The process exploits the excited-state reactivity of 4-acyl-1,4-dihydropyridines, which can readily generate acyl radicals upon blue light absorption. By avoiding the need for external oxidants, this radical-generating strategy enables a departure from the classical, oxidative Minisci-type pattern and unlocks a unique reactivity, leading to hydroxyalkylated heteroarenes. Mechanistic investigations provide evidence that a radical-mediated spin-center shift is the key step of the process. The method's mild reaction conditions and high functional group tolerance accounted for the late-stage functionalization of active pharmaceutical ingredients and natural products.
Project description:Organoboron and organosilicon compounds are used not only as synthetic building blocks but also as functional materials and pharmaceuticals, and compounds with multiple boryl and silyl groups are beginning to be used for these purposes. Especially in drug discovery, methodology providing easy stereoselective access to aliphatic nitrogen heterocycles bearing multiple boryl or silyl groups from readily available aromatic nitrogen heterocycles would be attractive. However, such transformations remain challenging, and available reactions have been mostly limited to dearomative hydroboration or hydrosilylation reactions. Here, we report the dearomative triple elementalization (carbo-sila-boration) of quinolines via the addition of organolithium followed by photo-boosted silaboration, affording the desired products with complete chemo-, regio-, and stereoselectivity. The reaction proceeds via the formation of silyl radicals instead of silyl anions. We also present preliminary studies to illustrate the potential of silaboration products as synthetic platforms.
Project description:Heterocycles are the backbone of modern medical chemistry and drug development. The derivatization of "an olefin" inside aromatic rings represents an ideal approach to access functionalized saturated heterocycles from abundant aromatic building blocks. Here, we report an operationally simple, efficient, and practical method to selectively access hydrosilylated and reduced N-heterocycles from bicyclic aromatics via a key diradical intermediate. This approach is expected to facilitate complex heterocycle functionalizations that enable access to novel medicinally relevant scaffolds.
Project description:Benzocycloheptenes constitute a common structural motif embedded in many natural products and biologically active compounds. Herein, we report their concise preparation from non-activated polycyclic arenes using a two-step sequence involving dearomative [4+2]-cycloaddition with arenophile in combination with palladium-catalyzed cyclopropanation, followed by cycloreversion-initiated ring expansion. The described strategy provides a working alternative to the Buchner reaction, which is limited to monocyclic arenes. Overall, this methylene-insertion molecular editing approach enables rapid and direct conversion of simple (hetero)arenes into a range of substituted (aza)benzocycloheptatrienes, which can undergo a myriad of downstream functionalizations.
Project description:Reactions that lead to destruction of aromatic ring systems often require harsh conditions and, thus, take place with poor selectivities. Selective partial dearomatization of fused arenes is even more challenging but can be a strategic approach to creating versatile, complex polycyclic frameworks. Herein we describe a general organophotoredox approach for the chemo- and regioselective dearomatization of structurally diverse polycyclic aromatics, including quinolines, isoquinolines, quinoxalines, naphthalenes, anthracenes and phenanthrenes. The success of the method for chemoselective oxidative rupture of aromatic moieties relies on precise manipulation of the electronic nature of the fused polycyclic arenes. Mechanistic studies show that the addition of a hydrogen atom transfer (HAT) agent helps favor the dearomatization pathway over the more thermodynamically downhill aromatization pathway. We show that this strategy can be applied to rapid synthesis of biologically valued targets and late-stage skeletal remodeling en route to complex structures.
Project description:An efficient one-pot tandem cyclization/[3 + 2] cycloaddition reaction of N'-(2-alkynylbenzylidene)hydrazides with ethyl 4,4,4-trifluorobut-2-ynoate under silver triflate-catalyzed or electrophile-mediated conditions is described. Various trifluoromethylated pyrazolo[5,1-a]isoquinolines were afforded in moderate to excellent yield by this developed method.
Project description:Driven by the ever-increasing pace of drug discovery and the need to push the boundaries of unexplored chemical space, medicinal chemists are routinely turning to unusual strained bioisosteres such as bicyclo[1.1.1]pentane, azetidine, and cyclobutane to modify their lead compounds. Too often, however, the difficulty of installing these fragments surpasses the challenges posed even by the construction of the parent drug scaffold. This full account describes the development and application of a general strategy where spring-loaded, strained C-C and C-N bonds react with amines to allow for the "any-stage" installation of small, strained ring systems. In addition to the functionalization of small building blocks and late-stage intermediates, the methodology has been applied to bioconjugation and peptide labeling. For the first time, the stereospecific strain-release "cyclopentylation" of amines, alcohols, thiols, carboxylic acids, and other heteroatoms is introduced. This report describes the development, synthesis, scope of reaction, bioconjugation, and synthetic comparisons of four new chiral "cyclopentylation" reagents.
Project description:Enantioselective total syntheses of the anticancer isocarbostyril alkaloids (+)-7-deoxypancratistatin, (+)-pancratistatin, (+)-lycoricidine, and (+)-narciclasine are described. Our strategy for accessing this unique class of natural products is based on the development of a Ni-catalyzed dearomative trans-1,2-carboamination of benzene. The effectiveness of this dearomatization approach is notable, as only two additional olefin functionalizations are needed to construct the fully decorated aminocyclitol cores of these alkaloids. Installation of the lactam ring has been achieved through several pathways and a direct interconversion between natural products was established via a late-stage C-7 cupration. Using this synthetic blueprint, we were able to produce natural products on a gram scale and provide tailored analogs with improved activity, solubility, and metabolic stability.