Project description:The tetrahydroisoquinoline (THIQ) ring system is present in a large variety of structurally diverse natural products exhibiting a wide range of biological activities. Routes to mimic the biosynthetic pathways to such alkaloids, by building cascade reactions in vitro, represents a successful strategy and can offer better stereoselectivities than traditional synthetic methods. S-Adenosylmethionine (SAM)-dependent methyltransferases are crucial in the biosynthesis and diversification of THIQs; however, their application is often limited in vitro by the high cost of SAM and low substrate scope. In this study, we describe the use of methyltransferases in vitro in multi-enzyme cascades, including for the generation of SAM in situ. Up to seven enzymes were used for the regioselective diversification of natural and non-natural THIQs on an enzymatic preparative scale. Regioselectivites of the methyltransferases were dependent on the group at C-1 and presence of fluorine in the THIQs. An interesting dual activity was also discovered for the catechol methyltransferases used, which were found to be able to regioselectively methylate two different catechols in a single molecule.
Project description:Chemoenzymatic reaction cascades can provide access to chiral compounds from low-cost starting materials in one pot. Here we describe one-pot asymmetric routes to tetrahydroisoquinoline alkaloids (THIAs) using the Pictet-Spenglerase norcoclaurine synthase (NCS) followed by a cyclisation, to give alkaloids with two new heterocyclic rings. These reactions operated with a high atom economy to generate THIAs in high yields.
Project description:Glycosphingolipids are a diverse family of biologically important glycolipids. In addition to variations on the lipid component, more than 300 glycosphingolipid glycans have been characterized. These glycans are directly involved in various molecular recognition events. Several naturally occurring sialic acid forms have been found in sialic acid-containing glycosphingolipids, namely gangliosides. However, ganglioside glycans containing less common sialic acid forms are currently not available. Herein, highly effective one-pot multienzyme (OPME) systems are used in sequential for high-yield and cost-effective production of glycosphingolipid glycans, including those containing different sialic acid forms such as N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-d-glycero-d-galacto-nononic acid (Kdn), and 8-O-methyl-N-acetylneuraminic acid (Neu5Ac8OMe). A library of 64 structurally distinct glycosphingolipid glycans belonging to ganglio-series, lacto-/neolacto-series, and globo-/isoglobo-series glycosphingolipid glycans is constructed. These glycans are essential standards and invaluable probes for bioassays and biomedical studies.
Project description:Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with glycosyltransferases in one pot for efficient production of the target glycans from simple monosaccharides and acceptors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitated the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modifications (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequence for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of the glycosyltransferases define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. This Perspective summarizes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed.
Project description:The operability and substrate scope of a redesigned vinylphenol hydratase as a single biocatalyst or as part of multienzyme cascades using either substituted coumaric acids or phenols as stable, cheap, and readily available substrates are reported.
Project description:Multienzyme cascade biocatalysis is an efficient synthetic process, avoiding the isolation/purification of intermediates and shifting the reaction equilibrium to the product side.. However, multienzyme systems are often limited by their incompatibility and cross-reactivity. Herein, we report a multi-responsive emulsion to proceed multienzyme reactions sequentially for high reactivity. The emulsion is achieved using a CO2 , pH, and thermo-responsive block copolymer as a stabilizer, allowing the on-demand control of emulsion morphology and phase composition. Applying this system to a three-step cascade reaction enables the individual optimal condition for each enzyme, and a high overall conversion (ca. 97 % of the calculated limit) is thereby obtained. Moreover, the multi-responsiveness of the emulsion allows the facile and separate yielding/recycling of products, polymers and active enzymes. Besides, the system could be scaled up with a good yield.
Project description:Sialidase transition state analog inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (Neu5Ac2en, DANA) has played a leading role in developing clinically used anti-influenza virus drugs. Taking advantage of the Neu5Ac2en-forming catalytic property of Streptococcus pneumoniae sialidase SpNanC, an effective one-pot multienzyme (OPME) strategy has been developed to directly access Neu5Ac2en and its C-5, C-9, and C-7-analogs from N-acetylmannosamine (ManNAc) and analogs. The obtained Neu5Ac2en analogs can be further derivatized at various positions to generate a larger inhibitor library. Inhibition studies demonstrated improved selectivity of several C-5- or C-9-modified Neu5Ac2en derivatives against several bacterial sialidases. The study provides an efficient enzymatic method to access sialidase inhibitors with improved selectivity.
Project description:Arabidopsis thaliana glucuronokinase (AtGlcAK) was cloned and shown to be able to use various uronic acids as substrates to produce the corresponding uronic acid-1-phosphates. AtGlcAK or Bifidobacterium infantis galactokinase (BiGalK) was used with a UDP-sugar pyrophosphorylase, an inorganic pyrophosphatase, with or without a glycosyltransferase for highly efficient synthesis of UDP-uronic acids and glucuronides. These improved cost-effective one-pot multienzyme (OPME) systems avoid the use of nicotinamide adenine dinucleotide (NAD(+))-cofactor in dehydrogenase-dependent UDP-glucuronic acid production processes and can be broadly applied for synthesizing various glucuronic acid-containing molecules.
Project description:6-Exo-trig cyclization reaction through regioselective carbopalladation was demonstrated with N-(2-halobenzyl)-N-allylamines to furnish the corresponding C4-substituted tetrahydroisoquinoline derivatives. The scope of the reaction was extended to the synthesis of C4-quaternary tetrahydroisoquinoline derivatives also. The nature of the substituent on the olefin moiety dictates the course of the carbopalladation sequence. Regioselective carbopalladation is substantiated by performing the reaction with unsymmetrical diallylated amine substrates.