Correction to "A novel violet fluorescent protein contains a unique oxidized tyrosine as the simplest chromophore ever reported in fluorescent proteins".
Correction to "A novel violet fluorescent protein contains a unique oxidized tyrosine as the simplest chromophore ever reported in fluorescent proteins".
Protein science : a publication of the Protein Society 20240401 4
Project description:We describe an engineered violet fluorescent protein from the lancelet Branchiostoma floridae (bfVFP). This is the first example of a GFP-like fluorescent protein with a stable fluorescent chromophore lacking an imidazolinone ring; instead, it consists of oxidized tyrosine 68 flanked by glycine 67 and alanine 69. bfVFP contains the simplest chromophore reported in fluorescent proteins and was generated from the yellow protein lanFP10A2 by two synergetic mutations, S148H and C166I. The chromophore structure was confirmed crystallographically and by high-resolution mass spectrometry. The photophysical characteristics of bfVFP (323/430 nm, quantum yield 0.33, and Ec 14,300 M-1 cm-1 ) make it potentially useful for multicolor experiments to expand the excitation range of available FP biomarkers and Förster resonance energy transfer with blue and cyan fluorescent protein acceptors.
Project description:mPlum is a far-red fluorescent protein with emission maximum at approximately 650 nm and was derived by directed evolution from DsRed. Two residues near the chromophore, Glu16 and Ile65, were previously revealed to be indispensable for the far-red emission. Ultrafast time-resolved fluorescence emission studies revealed a time dependent shift in the emission maximum, initially about 625 nm, to about 650 nm over a period of 500 ps. This observation was attributed to rapid reorganization of the residues solvating the chromophore within mPlum. Here, the crystal structure of mPlum is described and compared with those of two blue shifted mutants mPlum-E16Q and -I65L. The results suggest that both the identity and precise orientation of residue 16, which forms a unique hydrogen bond with the chromophore, are required for far-red emission. Both the far-red emission and the time dependent shift in emission maximum are proposed to result from the interaction between the chromophore and Glu16. Our findings suggest that significant red shifts might be achieved in other fluorescent proteins using the strategy that led to the discovery of mPlum.
Project description:Engineering fluorescent proteins (FPs) to emit light at longer wavelengths is a significant focus in the development of the next generation of fluorescent biomarkers, as far-red light penetrates tissue with minimal absorption, allowing better imaging inside of biological hosts. Structure-guided design and directed evolution have led to the discovery of red FPs with significant bathochromic shifts to their emission. Here, we present the crystal structure of one of the most bathochromically shifted FPs reported to date, AQ143, a nine-point mutant of aeCP597, a chromoprotein from Actinia equina. The 2.19 Å resolution structure reveals several important chromophore interactions that contribute to the protein's far-red emission and shows dual occupancy of the green and red chromophores.
Project description:A key property of proteins of the green fluorescent protein (GFP) family is their ability to form a chromophore group by post-translational modifications of internal amino acids, e.g. Ser65-Tyr66-Gly67 in GFP from the jellyfish Aequorea victoria (Cnidaria). Numerous structural studies have demonstrated that the green GFP-like chromophore represents the `core' structure, which can be extended in red-shifted proteins owing to modifications of the protein backbone at the first chromophore-forming position. Here, the three-dimensional structures of green laGFP (?ex/?em = 502/511?nm) and red laRFP (?ex/?em ? 521/592?nm), which are fluorescent proteins (FPs) from the lancelet Branchiostoma lanceolatum (Chordata), were determined together with the structure of a red variant laRFP-?S83 (deletion of Ser83) with improved folding. Lancelet FPs are evolutionarily distant and share only ?20% sequence identity with cnidarian FPs, which have been extensively characterized and widely used as genetically encoded probes. The structure of red-emitting laRFP revealed three exceptional features that have not been observed in wild-type fluorescent proteins from Cnidaria reported to date: (i) an unusual chromophore-forming sequence Gly58-Tyr59-Gly60, (ii) the presence of Gln211 at the position of the conserved catalytic Glu (Glu222 in Aequorea GFP), which proved to be crucial for chromophore formation, and (iii) the absence of modifications typical of known red chromophores and the presence of an extremely unusual covalent bond between the Tyr59?C(?) atom and the hydroxyl of the proximal Tyr62. The impact of this covalent bond on the red emission and the large Stokes shift (?70?nm) of laRFP was verified by extensive structure-based site-directed mutagenesis.
Project description:Post-translational modifications (PTMs) alter the function and fate of proteins and cells in almost every conceivable way. Protein modifications can occur as a result of specific regulating actions of enzymes, such as tyrosine kinases phosphorylating tyrosine residues or by nonenzymatic reactions, such as oxidation related to oxidative stress and diseases. While many studies have addressed the multisite, dynamic, and network-like properties of PTMs, only little is known of the interplay of the same site modifications. In this work, we studied the enzymatic phosphorylation of oxidized tyrosine (l-DOPA) residues using synthetic insulin receptor peptides, in which tyrosine residues were replaced with l-DOPA. The phosphorylated peptides were identified by liquid chromatography-high-resolution mass spectrometry and the site of phosphorylation by tandem mass spectrometry. The results clearly show that the oxidized tyrosine residues are phosphorylated, displaying a specific immonium ion peak in the MS2 spectra. Furthermore, we detected this modification in our reanalysis (MassIVE ID: MSV000090106) of published bottom-up phosphoproteomics data. The modification, where both oxidation and phosphorylation take place at the same amino acid, has not yet been published in PTM databases. Our data indicate that there can be multiple PTMs that do not exclude each other at the same modification site.
Project description:Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to phytochromes. All CBCRs examined to date utilize a conserved Cys residue to form a covalent thioether linkage to the bilin chromophore. In the insert-Cys CBCR subfamily, a second conserved Cys can covalently link to the bilin C10 methine bridge, allowing detection of near-UV to blue light. The best understood insert-Cys CBCR is the violet/orange CBCR NpF2164g3 from Nostoc punctiforme, which has a stable second linkage in the violet-absorbing dark state. Photoconversion of NpF2164g3 leads to elimination of the second linkage and formation of an orange-absorbing photoproduct. We recently reported NMR chemical shift assignments for the orange-absorbing photoproduct state of NpF2164g3. We here present equivalent information for its violet-absorbing dark state. In both photostates, NpF2164g3 is monomeric in solution and regions containing the two conserved Cys residues essential for photoconversion are structurally disordered. In contrast to blue light receptors such as phototropin, NpF2164g3 is less structurally ordered in the dark state than in the photoproduct. The insert-Cys insertion loop and C-terminal helix exhibit light-dependent structural changes. Moreover, a motif containing an Asp residue also found in other CBCRs and in phytochromes adopts a random-coil structure in the dark state but a stable α-helix structure in the photoproduct. NMR analysis of the chromophore is consistent with a less ordered dark state, with A-ring resonances only resolved in the photoproduct. The C10 atom of the bilin chromophore exhibits a drastic change in chemical shift upon photoconversion, changing from 34.5 ppm (methylene) in the dark state to 115 ppm (methine) in the light-activated state. Our results provide structural insight into the two-Cys photocycle of NpF2164g3 and the structurally diverse mechanisms used for light perception by the larger phytochrome superfamily.
Project description:Chromophore assisted laser inactivation (CALI) is a technique that uses irradiation of chromophores proximate to a target protein to inactivate function. Previously, enhanced green fluorescent protein (EGFP) mediated CALI has been used to inactivate EGFP-fusion proteins in a spatio-temporally defined manner within cells, but the mechanism of inactivation is unknown. To help elucidate the mechanism of protein inactivation mediated by fluorescent protein CALI ([FP]-CALI), the activities of purified glutathione-S-transferase-FP (GST-EXFP) fusions were measured after laser irradiation in vitro. Singlet oxygen and free radical quenchers as well as the removal of oxygen inhibited CALI, indicating the involvement of a reactive oxygen species (ROS). At higher concentrations of protein, turbidity after CALI increased significantly indicating cross-linking of proximate fusion proteins suggesting that damage of residues on the surface of the protein, distant from the active site, results in inactivation. Control experiments removed sample heating as a possible cause of these effects. Different FP mutants fused to GST vary in their CALI efficiency in the order enhanced green fluorescent protein (EGFP) > enhanced yellow fluorescent protein (EYFP) > enhanced cyan fluorescent protein (ECFP), while a GST construct that binds fluorescein-based arsenical hairpin binder (FlAsH) results in significantly higher CALI efficiency than any of the fluorescent proteins (XFPs) tested. It is likely that the hierarchy of XFP effectiveness reflects the balance between ROS that are trapped within the XFP structure and cause fluorophore and chromophore bleaching and those that escape to effect CALI of proximate proteins.
Project description:The chromophore of fluorescent proteins, including the green fluorescent protein (GFP), contains a highly conjugated imidazolidinone ring. In many fluorescent proteins, the carbonyl group of the imidazolidinone ring engages in a hydrogen bond with the side chain of an arginine residue. Prior studies have indicated that such an electrophilic carbonyl group in a protein often accepts electron density from a main-chain oxygen. A survey of high-resolution structures of fluorescent proteins indicates that electron lone pairs of a main-chain oxygen-Thr62 in GFP-donate electron density into an antibonding orbital of the imidazolidinone carbonyl group. This n??* electron delocalization prevents structural distortion during chromophore excitation that could otherwise lead to fluorescence quenching. In addition, this interaction is present in on-pathway intermediates leading to the chromophore, and thus could direct its biogenesis. Accordingly, this n??* interaction merits inclusion in computational and photophysical analyses of the chromophore, and in speculations about the molecular evolution of fluorescent proteins.
Project description:Cyan fluorescent proteins (CFP) with tryptophan66-based chromophore are widely used for live cell imaging. In contrast to green and red fluorescent proteins, no charged states of the CFP chromophore have been described. Here, we studied synthetic CFP chromophore and found that its indole group can be deprotonated rather easily (pKa 12.4).We then reproduced this effect in the CFP mCerulean by placing basic amino acids in the chromophore microenvironment. As a result, green-emitting variant with an anionic chromophore and key substitution Val61Lys was obtained. This is the first evidence strongly suggesting that tryptophan-based chromophores in fluorescent proteins can exist in an anionic charged state. Switching between protonated and deprotonated Trp66 in fluorescent proteins represents a new unexplored way to control their spectral properties.