Project description:Schmid-type metaphyseal chondrodysplasia (MIM 156500) is an uncommon autosomal dominant skeletal dysplasia caused by heterozygous mutations in the COL10A1 gene (MIM 120110) encoding the α1(X) chains of type X collagen. We report an 8-year-old girl with waddling gait, short stature, mild dorsal scoliosis, coxa vara, short lower limbs, bowing of the femurs, genu varum, and metaphyseal fraying and splaying, who is a carrier of a novel heterozygous 2-bp (c.1894_1895dupTA; p.Leu633Thrfs*45) duplication in exon 3 of the COL10A1 gene.
Project description:This study aimed to gain a better understanding of the molecular circuitry of Schmid-type metaphyseal chondrodysplasia (SMCD), and to identify more potential genes associated with the pathogenesis of SMCD. Microarray data from GSE72261 were downloaded from the NCBI GEO database, including collagen X p.Asn617Lys knock-in mutation (ColXN617K), ablated XBP1 activity (Xbp1CartΔEx2), compound mutant (C/X), and wild-type (WT) specimens. Differentially expressed genes (DEGs) were screened in Xbp1 vs. WT, Col vs. WT and CX vs. WT, respectively. Pathway enrichment analysis of these DEGs was performed. Transcription factors (TFs) of the overlapping DEGs were identified. Weighted correlation network analysis (WGCNA) was performed to find modules of DEGs with high correlations, followed by gene function analysis and a protein-protein interaction network construction. In total, 481, 1,530 and 1,214 DEGs were identified in Xbp1 vs. WT, Col vs. WT and CX vs. WT, respectively. These DEGs were enriched in different pathways, such as extracellular matrix (ECM)-receptor interaction and metabolism-related pathways. A total of 7 TFs were found to regulate 19 common upregulated genes, and 4 TFs were identified to regulate 21 common downregulated genes. Two significant gene co-expression modules were enriched and DEGs in the 2 modules were mainly enriched in different biological processes, such as ribosome biogenesis. Moreover, Kras (downregulated), Col5a1 (upregulated) and Furin (upregulated) were both identified in the regulatory networks and protein-protein interaction (PPI) network. On the whole, our findings indicate that the Kras, Col5a1 and Furin genes may play essential roles in the molecular mechanisms of SMCD, which warrants further investigation.
Project description:BackgroundSchmid-type metaphyseal chondrodysplasia (SMCD) is a rare autosomal dominant skeletal dysplasia caused by heterozygous mutations in COL10A1, the gene which encodes collagen type X alpha 1 chain. However, its genotype-phenotype relationship has not been fully determined. Subjects and Methods The proband is a 2-year-old boy, born of non-consanguineous Chinese parents. We conducted a systematic analysis of the clinical and radiological characteristics and a follow-up study of the proband. Whole-exome sequencing was applied for the genetic analysis, together with bioinformatic analysis of predicted consequences of the identified variant. A homotrimer model was built to visualize the affected region and predict possible outcomes of this variant. Furthermore, a literature review and genotype-phenotype analysis were performed by online searching all cases with SMCD.ResultsA novel heterozygous variant (NM_000493.4: c.1863_1866delAATG, NP_000484.2: p.(Met622 Thrfs*54)) was identified in COL10A1 gene in the affected child. And it was predicted to be pathogenic by in silico analysis. Protein modeling revealed that the variant was located in the NC1 domain, which was predicted to produce truncated collagen and impair the trimerization of collagen type X alpha 1 chain and combination with molecules in the matrix. Moreover, genotype-phenotype correlation analysis demonstrated that patients with truncating variants or variants in NC1 domain often presented earlier onset and severer symptoms compared with those with non-truncating or variants in non-NC1 domains.ConclusionThe NC1 domain of COL10A1 was proved to be the hotspot region underlying SMCD, patients with variants in NC1 domain were more likely to present severer manifestations at an earlier age.
Project description:BackgroundSchmid-type metaphyseal chondrodysplasia (MCDS) is an autosomal dominant disorder caused by COL10A1 mutations, which is characterized by short stature, waddling gait, coxa vara and bowing of the long bones. However, descriptions of the expressivity of MCDS are rare.MethodsTwo probands and available family members affected with MCDS were subjected to clinical and radiological examination. Genomic DNA of all affected individuals was subjected to whole-exome sequencing, and candidate mutations were verified by Sanger sequencing in all available family members and in 250 healthy donors. A spatial model of the type X collagen (α1) C-terminal noncollagenous (NC1) domain was further constructed.ResultsWe found that the phenotype of affected family members exhibited incomplete dominance. Mutation analysis indicated that there were two novel heterozygous missense mutations, [c.1765 T > A (p.Phe589Ile)] and [c.1846A > G (p.Lys616Glu)] in the COL10A1 gene in family 1 and 2, respectively. The two novel substitution sites were highly conserved and the mutations were predicted to be deleterious by in silico analysis. Furthermore, protein modeling revealed that the two substitutions were located in the NC1 domain of collagen X (α1), which potentially impacted the trimerization of collagen X (α1) and combination with molecules in the pericellular matrix.ConclusionTwo novel mutations were identified in the present study, which will facilitate diagnosis of MCDS and further expand the spectrum of the COL10A1 mutations associated with MCDS patients. In addition, our research revealed the phenomenon of incomplete dominance in MCDS.
Project description:Type X collagen is a short-chain homotrimeric collagen expressed in the hypertrophic zone of calcifying cartilage. The clustering of mutations in the carboxyl-terminal NC1 domain in Schmid metaphyseal chondrodysplasia (SMCD) suggested a critical role for this type X collagen domain, but since no direct analysis of cartilage has been conducted in SMCD patients, the mechanisms of type X collagen dysfunction remain controversial. To resolve this problem, we obtained SMCD growth plate cartilage, determined the type X collagen mutation, and analyzed the expression of mutant and normal type X collagen mRNA and protein. The mutation was a single nucleotide substitution that changed the Tyr632 codon (TAC) to a stop codon (TAA). However, analysis of the expression of the normal and mutant allele transcripts in growth plate cartilage by reverse transcription PCR, restriction enzyme mapping, and a single nucleotide primer extension assay, demonstrated that only normal mRNA was present. The lack of mutant mRNA is most likely the result of nonsense-mediated mRNA decay, a common fate for transcripts carrying premature termination mutations. Furthermore, no mutant protein was detected by immunoblotting cartilage extracts. Our data indicates that a functionally null allele leading to type X collagen haploinsufficiency is the molecular basis of SMCD in this patient.
Project description:To evaluate the clinical-phenotypic characteristics of Schmid metaphyseal chondrodysplasia (SMCD) inflicted by a novel missense mutation of COL10A1 gene: c.2020G > A; p.Gly674Arg. A female child aged about 3 yrs. and 8 months was subjected to Radiograph test to validate the symptoms of SMCD. The polymorphism analysis by the next-generation sequencing (NGS) was performed using the peripheral blood DNA samples of the patient and other family inmates, including, the younger male sibling. The effect of the mutation on the non-collagenous carboxyl-terminal (NC1) domain of collagen X was studied using the SWISS-MODEL online server for trimer modelling; PROSA and PROCHECK-Ramachandran plot for structural validation; Mean Square Plot (RMSF) for structural rigidity. Radiograph examination of lower limbs confirmed the bowed legs in both the patient and her younger brother (study groups). The inheritance of the novel missense mutation of COL10A1: c.2020G > A; p.Gly674Arg (at chromosome-6q22.1) was confirmed in the study groups from the SMCD-affected mother. The extended interactions of the mutant-Arg674 with the Ser552 and Phe589 (β strand B) in the NC1 domain of α1(X) chain monomer is more likely to intervene its trimer formation by weakening the structural rigidity of the crucial strand H compared to its wild type. This plausibly deters the collagen X synthesis inflicting the bowed legs with the altered distal ulna bone morphology in the study groups. The inheritance of COL10A1 mutation: c.2020G > A; p.Gly674Arg has inflicted the SMCD with the characteristic bowed legs in the study groups. Radiograph and NGS could be a valid diagnostic module to initiate the treatment of SMCD.
Project description:BACKGROUND: The Schmid type of metaphyseal chondrodysplasia (MCDS) is generally due to mutations in COL10A1 encoding for type X collagen of cartilage. METHODS: We performed a study on the genes coding for the RNA components of RNase MRP (MRPR) and RNase P (H1RNA) among 20 patients with diagnosis of MCDS and no mutations in COL10A1. RESULTS: Two patients were found to be homozygous for a base substitution G for A at nucleotide 70 of RMRP, which is the major mutation causing cartilage-hair hypoplasia. No pathogenic mutations were detected in H1RNA. CONCLUSION: Cartilage-hair hypoplasia diagnosis should be considered in patients with metaphyseal chondrodysplasia even in the absence of any extra-skeletal manifestations if no mutation in COL10A1 can be found and the family history is compatible with autosomal recessive inheritance. Correct diagnosis is important for genetic counselling and for proper follow up of the patients.
Project description:We set out to determine the role of the IRE1/XBP1 pathway, the most ancient and highly conserved endoplasmic reticulum (ER) stress-sensing pathway of the unfolded protein response (UPR), in Schmid metaphyseal chondrodysplasia (MCDS). RNA derived from hypertrophic zones microdissected from growth plates of wildtype mice, mice lacking XBP1 activity in chondrocytes (Xbp1CartΔEx2), mice carrying a COL10A1 pN617K mutation (ColXN617K), and compound mutants (C/X) was analyzed by whole genome microarray analysis. 1633 probes were differentially expressed between ColXN617K and wildtype, 215 probes were differentially expressed between Xbp1CartΔEx2 and wildtype, and 1337 probes were differentially expressed between C/X and wildtype. 885 probes were differentially expressed between ColXN617K and wildtype but not Xbp1CartΔEx2 and wildtype or C/X and wildtype, thus representing the XBP1-dependent response to hypertrophic chondrocyte ER stress. 688 probes were differentially expressed between ColXN617K and wildtype and between C/X and wildtype but not Xbp1CartΔEx2 and wildtype, thus representing the XBP1-independent response to hypertrophic chondrocyte ER stress. Results were validated by qPCR.