Project description:In the EU, lower back pain affects more than 40% of the working population. Mechanical loading of the lower back has been shown to be an important risk factor. Peak mechanical load can be reduced by ergonomic interventions, the use of cranes and, more recently, by the use of exoskeletons. Despite recent advances in the development of exoskeletons for industrial applications, they are not widely adopted by industry yet. Some of the challenges, which have to be overcome are a reduced range of motion, misalignment between the human anatomy and kinematics of the exoskeleton as well as discomfort. A body of research exists on how an exoskeleton can be designed to compensate for misalignment and thereby improve comfort. However, how to design an exoskeleton that achieves a similar range of motion as a human lumbar spine of up to 60° in the sagittal plane, has not been extensively investigated. We addressed this need by developing and testing a novel passive back support exoskeleton, including a mechanism comprised of flexible beams, which run in parallel to the spine, providing a large range of motion and lowering the peak torque requirements around the lumbo-sacral (L5/S1) joint. Furthermore, we ran a pilot study to test the biomechanical (N = 2) and functional (N = 3) impact on subjects while wearing the exoskeleton. The biomechanical testing was once performed with flexible beams as a back interface and once with a rigid structure. An increase of more than 25% range of motion of the trunk in the sagittal plane was observed by using the flexible beams. The pilot functional tests, which are compared to results from a previous study with the Laevo device, suggest, that the novel exoskeleton is perceived as less hindering in almost all tested tasks.
Project description:BackgroundChildren with hemiparesis are commonly prescribed ankle foot orthoses to help improve gait; however, these orthoses often result in only small and variable changes in gait. Research with adult stroke survivors has suggested that orthoses that extend beyond the ankle using long, passive tendon-like structures (i.e. exotendons) can improve walking.ObjectivesThe aim of this study was to quantify the impact of an exotendon-based exoskeleton on pediatric gait.Study designRepeated-measures study.MethodsTwo typically-developing children and two children with hemiparesis completed a gait analysis, walking without and with the exoskeleton. The exotendon was tested at three stiffness levels.ResultsAll children were able to walk comfortably with the exoskeleton, with minimal changes in step width. Walking speed increased and lower limb joint symmetry improved for the children with hemiparesis with the exoskeleton. Each participant had changes in muscle activity while walking with the exoskeleton, although the impact on specific muscles and response to exotendon stiffness varied.ConclusionExotendon-based exoskeletons may provide an alternative solution for optimizing gait in therapy and in the community for children with hemiparesis. Determining the optimal stiffness and configuration for each child is an important area of future research.
Project description:Various back support exoskeletons (BSEs) have been developed to reduce the workload and the risk of musculoskeletal disorders. However, the evaluations of such devices have primarily focused on specific quantitative aspects like muscle activation level or metabolic cost without any assessment of the user perception or comfort. In addition, the absence of an universal guidance or agreement on the methods for quantifying the efficacy of exoskeletons has hampered a systematic comparison among the developed devices. This study introduces a newly developed passive BSE for heavy load handling workers, and verifies its assistive effect through a rigorous and multifaceted evaluation. Fifteen young and healthy males participated in two experiment sessions. In the first session, participants lifted a 15 kg box and held it in a static position. In the second session, participants performed repetitive lifting tasks with a 10 kg box. The developed BSE reduced root mean square, peak, and integrated muscle activation with statistical significance in the key muscles. The BSE alleviated muscle fatigue by delaying spectral shift of instantaneous median frequency in the lumbar erector spinae (p < 0.001) and gluteus maximus (p < 0.001). The BSE also decreased energy expenditure by 13.6% (p < 0.001). In addition, the BSE reduced participants' rate of perceived exertion and local musculoskeletal discomfort by 14.7% (p = 0.005) and 30.5% (p = 0.001), respectively. These results support the efficacy of the developed BSE. The multifaceted evaluation process used in this study also contributes to proposing a systematic guidance on evaluating BSEs.
Project description:Due to the load shifting mechanism of many back-support exoskeletons (BSEs), this study evaluated possible side effects of using a BSE on knee joint loading. Twenty-nine subjects (25.9 (±4.4) years, 179.0 (±6.5) cm; 73.6 (±9.4) kg) performed simulated static sorting and dynamic lifting tasks, including stoop and squat styles and different trunk rotation postures. Ground reaction force, body posture and the force between the chest and the BSE's contact interface were recorded using a force plate, two-dimensional gravimetric position sensors, and a built-in force sensor of the BSE, respectively. Using these parameters and the subject's anthropometry, median and 90th percentile horizontal (HOR50, HOR90) and vertical (VERT50, VERT90) tibiofemoral forces were calculated via a self-developed inverse quasi-static biomechanical model. BSE use had a variable effect on HOR50 dependent on the working task and body posture. Generally, VERT50 increased without significant interaction effects with posture or task. HOR90 and VERT90 were not affected by using the BSE. In conclusion, utilizing the investigated exoskeleton is likely to induce side effects in terms of changed knee joint loading. This may depend on the applied working task and the user's body posture. The role of these changes in the context of a negative contribution to work-related cumulative knee exposures should be addressed by future research.
Project description:An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance.
Project description:The back support exoskeletons have garnered significant attention to alleviate musculoskeletal injuries, prevalent in industrial settings. In this paper, we propose AeBS, a quasi-passive back-support exoskeleton developed to provide variable assistive torque across the entire range of hip joint motion, for tasks with frequent load changes. AeBS can adjust the assistive torque levels while minimizing energy for the torque variation without constraining the range of motion of the hip joint. To match the requisite assistance levels for back support, a compact variable gravity compensation module with reinforced elastic elements is applied to AeBS. Additionally, we devised a bio-inspired hip joint mechanism that mimics the configuration of the human hip axis to ensure the free body motion of the wearer, significantly affecting assistive torque transmission and wearing comfort. Benchtop testing showed that AeBS has a variable assistive torque range of 5.81 Nm (ranging from 1.23 to 7.04 Nm) across a targeted hip flexion range of 135°. Furthermore, a questionnaire survey revealed that the bio-inspired hip joint mechanism effectively facilitates the transmission of the intended assistive torque while enhancing wearer comfort.
Project description:ObjectiveTo evaluate using a back exoskeleton in a simulated sorting task in a static forward bent trunk posture on muscle activity, posture, and heart rate (HR).BackgroundPotentials of exoskeletons for reducing musculoskeletal demands in work tasks need to be clarified.MethodsThirty-six healthy males performed the sorting task in 40°-forward bent static trunk posture for 90 seconds, in three trunk orientations, with and without exoskeleton. Muscle activity of the erector spinae (ES), biceps femoris (BF), trapezius descendens (TD), rectus abdominis (RA), vastus laterals (VL), and gastrocnemius medialis was recorded using surface electromyography normalized to a submaximal or maximal reference electrical activity (%RVE (reference voluntary electrical activity)/%MVE). Spine and lower limb postures were assessed by gravimetric position sensors, and HR by electrocardiography.ResultsUsing the exoskeleton resulted in decreased BF muscle activity [-8.12%RVE], and minor changes in ES [-1.29%MVE], RA [-0.28%RVE], VL [-0.49%RVE], and TD [+1.13%RVE] muscle activity. Hip and knee flexion increased [+8.1°; +6.7°]. Heart rate decreased by 2.1 bpm. Trunk orientation had an influence on BF muscle activity.ConclusionUsing the back exoskeleton in a short sorting task with static trunk posture mainly reduced hip extensor muscle activity and changed lower limb but not spine posture. Implications of using a back exoskeleton for workers' musculoskeletal health need further clarification.ApplicationThe detected changes by using the Laevo® illustrate the need for further investigation prior to practical recommendations of using exoskeletons in the field. Investigating various work scenarios in different kind of workers and long-term applications would be important elements.
Project description:The purpose of this study was to evaluate the effects of an industrial passive assisted exoskeleton (IPAE) with simulated lifting tasks on muscle activity, oxygen consumption, perceived level of exertion, local perceived pressure, and systemic usability. Eight workers were required to complete two lifting tasks with and without the IPAE, that were single lifting tasks (repeated 5 times) and 15 min repeated lifting tasks respectively. Both of the tasks required subjects to remove a toolbox from the ground to the waist height. The test results showed that IPAE significantly reduced the muscle activity of the lumbar erector spinae, thoracic erector spinae, middle deltoid and labrum-biceps muscles; the reduction effect during the 15 min lifting task was reached 21%, 12%, 32% and 38% respectively. The exoskeleton did not cause significant differences in oxygen consumption and the perceived level of exertion, but local perceived pressure on the shoulders, thighs, wrists, and waist of the subjects could be produced. 50% of the subjects rated the usability of the equipment as acceptable. The results illustrate the good potential of the exoskeleton to reduce the muscle activity of the low back and upper arms. However, there is still a concern for the obvious contact pressure.
Project description:We report the role of the acidity of support during the selectivity hydrogenolysis of glycerol over supported bimetallic palladium-ruthenium (PdRu) catalysts. The PdRu nanoparticles were supported on a series of metal oxides and zeolitic supports via the modified impregnation method and tested for the liquid-phase hydrogenolysis of glycerol using gaseous hydrogen. The relative acid site densities of selected catalysts were determined by ammonia temperature-programmed desorption and pyridine desorption experiments. Based on these studies, we report a direct correlation between the catalytic activity (conversion and 1,2 propane diol yield) and two different acid sites (strong acid sites and very strong acid sites). Besides zeolite-supported catalysts, TiO2 supported PdRu nanoparticles exhibit moderate catalytic activity; however, this catalyst shows high selectivity for the desired C-O bond cleavage to produce C3 products over the undesired C-C bond cleavage to produce < C3 products. This article is part of a discussion meeting issue 'Science to enable the circular economy'.
Project description:ObjectiveTo compare whole-body kinematics, leg muscle activity, and discomfort while performing a 10-min carrying task with and without a passive upper-body exoskeleton (CarrySuitⓇ), for both males and females.BackgroundDiverse commercial passive exoskeletons have appeared on the market claiming to assist lifting or carrying task. However, evidence of their impact on kinematics, muscle activity, and discomfort while performing these tasks are necessary to determine their benefits and/or limitations.MethodSixteen females and fourteen males carried a 15kg load with and without a passive exoskeleton during 10-min over a round trip route, in two non-consecutive days. Whole-body kinematics and leg muscle activity were evaluated for each condition. In addition, leg discomfort ratings were quantified before and immediately after the task.ResultsThe gastrocnemius and vastus lateralis muscle activity remained constant over the task with the exoskeleton. Without the exoskeleton a small decrease of gastrocnemius median activation was observed regardless of sex, and a small increase in static vastus lateralis activation was observed only for females. Several differences in sagittal, frontal, and transverse movements' ranges of motion were found between conditions and over the task. With the exoskeleton, ROM in the sagittal plane increased over time for the right ankle and pelvis for both sexes, and knees for males only. Thorax ROMs in the three planes were higher for females only when using the exoskeleton. Leg discomfort was lower with the exoskeleton than without.ConclusionThe results revealed a positive impact on range of motion, leg muscle activity, and discomfort of the tested exoskeleton.