Project description:BackgroundPools of salt water and puddles created by giant waves from the sea due to the tsunami that occurred on 26th December 2004 would facilitate increased breeding of brackish water malaria vector, Anopheles sundaicus. Land uplifts in North Andaman and subsidence in South Andaman have been reported and subsidence may lead to environmental disturbances and vector proliferation. This warrants a situation analysis and vector surveillance in the tsunami hit areas endemic for malaria transmitted by brackish water mosquito, An. sundaicus to predict the risk of outbreak.MethodsAn extensive survey was carried out in the tsunami-affected areas in Andaman district of the Andaman and Nicobar Islands, India to assess the extent of breeding of malaria vectors in the habitats created by seawater flooding. Types of habitats in relation to source of seawater inundation and frequency were identified. The salinity of the water samples and the mosquito species present in the larval samples collected from these habitats were recorded. The malaria situation in the area was also analysed.ResultsSouth Andaman, covering Port Blair and Ferrargunj sub districts, is still under the recurring phenomenon of seawater intrusion either directly from the sea or through a network of creeks. Both daily cycles of high tides and periodical spring tides continue to cause flooding. Low-lying paddy fields and fallow land, with a salinity ranging from 3,000 to 42,505 ppm, were found to support profuse breeding of An. sundaicus, the local malaria vector, and Anopheles subpictus, a vector implicated elsewhere. This area is endemic for both vivax and falciparum malaria. Malaria slide positivity rate has started increasing during post-tsunami period, which can be considered as an indication of risk of malaria outbreak.ConclusionPaddy fields and fallow land with freshwater, hitherto not considered as potential sites for An. sundaicus, are now major breeding sites due to saline water. Consequently, there is a risk of vector abundance with enhanced malaria transmission potential, due to the vastness of these tsunami-created breeding grounds and likelihood of them becoming permanent due to continued flooding in view of land subsidence. The close proximity of the houses and paucity of cattle may lead to a higher degree of man/vector contact causing a threat of malaria outbreak in this densely populated area. Measures to prevent the possible outbreak of malaria in this tsunami-affected area are discussed.
Project description:The present study was aimed at understanding the impact of COVID-19 pandemic related restrictions on the freshwater aquaculture sector of Andaman and Nicobar archipelago (ANI). We interviewed the freshwater fish farmers (N = 211) covering all the three districts (North and Middle, South Andaman, Nicobar district) of the archipelago. The results revealed the critical issues faced by the stakeholders such as fish seed unavailability, limitations in feeding, insufficient logistical support, movement related restrictions, lack of inputs, manpower shortages, etc. as the important constraints during lockdown. Our surveys also revealed that there was a significant reduction in the income of the farmers post COVID-19 outbreak (p < 0.001). Possible reform strategies that could promote the sector development and resilience were outlined to recover from the COVID-19 impacts. The study also highlights the significance of effective networking among the stakeholders and necessary preparedness measures to be undertaken by the fish farmers to deal with the exigencies. The study also recommends a policy framework to strengthen the planning and management of freshwater aquaculture sector towards the path of sustainability.
Project description:Murdannia saddlepeakensis (Commelinaceae), a new species from the Andaman and Nicobar Islands, India, is described and illustrated. The new species is remarkable for its narrowly linear leaves, two fertile stamens, single seeded locule and scorbiculate seeds.
Project description:Prioritizing efforts for conserving rare and threatened species with limited past data and lacking population estimates is predicated on robust assessments of their occupancy rates. This is particularly challenging for elusive, long-lived and wide-ranging marine mammals. In this paper we estimate trends in long-term (over 50 years) occupancy, persistence and extinction of a vulnerable and data-poor dugong (Dugong dugon) population across multiple seagrass meadows in the Andaman and Nicobar archipelago (India). For this we use hierarchical Bayesian dynamic occupancy models accounting for false negatives (detection probability<1), persistence and extinction, to two datasets: a) fragmentary long-term occurrence records from multiple sources (1959-2004, n = 40 locations), and b) systematic detection/non-detection data from current surveys (2010-2012, n = 57). Dugong occupancy across the archipelago declined by 60% (from 0.45 to 0.18) over the last 20 years and present distribution was largely restricted to sheltered bays and channels with seagrass meadows dominated by Halophila and Halodule sp. Dugongs were not found in patchy meadows with low seagrass cover. In general, seagrass habitat availability was not limiting for dugong occupancy, suggesting that anthropogenic factors such as entanglement in gillnets and direct hunting may have led to local extinction of dugongs from locations where extensive seagrass meadows still thrive. Effective management of these remnant dugong populations will require a multi-pronged approach, involving 1) protection of areas where dugongs still persist, 2) monitoring of seagrass habitats that dugongs could recolonize, 3) reducing gillnet use in areas used by dugongs, and 4) engaging with indigenous/settler communities to reduce impacts of hunting.
Project description:Using PCR and sequencing, we found Plasmodium knowlesi in the malaria vector Anopheles sundaicus mosquito collected from Katchal Island in the Andaman and Nicobar Islands, India. We cannot rule out natural transmission of this parasite to humans through this mosquito species. An in-depth investigation is needed to prevent disease outbreaks.
Project description:Natural disasters pose a threat to isolated populations of species with restricted distributions, especially those inhabiting islands. The Nicobar long tailed macaque.Macaca fascicularis umbrosus, is one such species found in the three southernmost islands (viz. Great Nicobar, Little Nicobar and Katchal) of the Andaman and Nicobar archipelago, India. These islands were hit by a massive tsunami (Indian Ocean tsunami, 26 December 2004) after a 9.2 magnitude earthquake. Earlier studies [Umapathy et al. 2003; Sivakumar, 2004] reported a sharp decline in the population of M. f. umbrosus after thetsunami. We studied the distribution and population status of M. f. umbrosus on thethree Nicobar Islands and compared our results with those of the previous studies. We carried out trail surveys on existing paths and trails on three islands to get encounter rate as measure of abundance. We also checked the degree of inundation due to tsunami by using Normalized Difference Water Index (NDWI) on landsat imageries of the study area before and after tsunami. Theencounter rate of groups per kilometre of M. f. umbrosus in Great Nicobar, Little Nicobar and Katchal was 0.30, 0.35 and 0.48 respectively with the mean group size of 39 in Great Nicobar and 43 in Katchal following the tsunami. This was higher than that reported in the two earlier studies conducted before and after the tsunami. Post tsunami, there was a significant change in the proportion of adult males, adult females and immatures, but mean group size did not differ as compared to pre tsunami. The results show that population has recovered from a drastic decline caused by tsunami, but it cannot be ascertained whether it has reached stability because of the altered group structure. This study demonstrates the effect of natural disasters on island occurring species.
Project description:The present study was intended to screen the wild crustaceans for co-infection with Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) and White Spot Syndrome Virus (WSSV) in Andaman and Nicobar Archipelago, India. We screened a total of 607 shrimp and 110 crab samples using a specific polymerase chain reaction, and out of them, 82 shrimps (13.5%) and 5 (4.5%) crabs were found positive for co-infection of IHHNV and WSSV. A higher rate of co-infection was observed in Penaeus monodon and Scylla serrata than other shrimp and crab species. The nucleotide sequences of IHHNV and WSSV obtained from crab in this present study exhibited very high sequence identity with their counterparts retrieved from various countries. Histopathological analysis of the infected shrimp gill sections further confirmed the eosinophilic intra-nuclear cowdry type A inclusion bodies and basophilic intra-nuclear inclusion bodies characteristics of IHHNV and WSSV infections, respectively. The present study serves as the first report on co-infection of WSSV and IHHNV in Andaman and Nicobar Archipelago, India and accentuates the critical need for continuous monitoring of wild crustaceans and appropriate biosecurity measures for brackishwater aquaculture.
Project description:An upsurge of fever cases of unknown origin, but resembling dengue and leptospirosis was reported in Havelock, Andaman & Nicobar Islands, an important tourism spot, during May 2014. Investigations were carried out to determine the aetiology, and to describe the epidemiology of the outbreak. The data on fever cases attending Primary Health Centre (PHC), Havelock showed that the average number of cases reporting per week over the last 2 years was 46·1 (95% confidence interval 19·4-72·9). A total of 27 (43·5%) patients out of the 62 suspected cases were diagnosed as having DENV infection based on a positive enzyme immunoassay or reverse transcriptase-polymerase chain reaction. The overall attack rate was 9·4 cases/1000 population and it ranged between 2·8 and 18·8/1000 in different villages. The nucleotide sequencing showed that the virus responsible was DENV-3. DENV-3 was first detected in the Andaman & Nicobar Islands in 2013 among wharf workers in Port Blair and within a year it has spread to Havelock Island which is separated from South Andaman by 36 nautical miles.
Project description:Rhizophoramucronatavar.alokii (Rhizophoraceae), a new variety of Rhizophora from the Andaman and Nicobar Islands, India, is described and illustrated. The new variety is remarkable in having four stamens, laterally folded leaves, a short peduncle, thick leathery petals, and a four-sided ovary with a sessile style. A key for the species of Rhizophora of the Andaman and Nicobar Islands is also provided.