Project description:The chemical reduction of a π-expanded polycyclic framework comprising a cyclooctatetraene moiety, octaphenyltetrabenzocyclooctatetraene, with lithium metal readily affords the corresponding tetra-anion instead of the expected aromatic dianion. As revealed by X-ray crystallography, the highly contorted tetra-anion is stabilized by coordination of two internally bound Li+ , while two external cations remain solvent separated. The variable-temperature 7 Li NMR spectra in THF confirm the presence of three types of Li+ ions and clearly differentiate internal binding, consistent with the crystal structure. Density-functional theory calculations suggest that the formation of the highly charged tetra-reduced carbanion is stabilized through Li+ coordination under the applied experimental conditions.
Project description:We developed an effective method for reductive radical formation that utilizes the radical anion of carbon dioxide (CO2•-) as a powerful single electron reductant. Through a polarity matched hydrogen atom transfer (HAT) between an electrophilic radical and a formate salt, CO2•- formation occurs as a key element in a new radical chain reaction. Here, radical chain initiation can be performed through photochemical or thermal means, and we illustrate the ability of this approach to accomplish reductive activation of a range of substrate classes. Specifically, we employed this strategy in the intermolecular hydroarylation of unactivated alkenes with (hetero)aryl chlorides/bromides, radical deamination of arylammonium salts, aliphatic ketyl radical formation, and sulfonamide cleavage. We show that the reactivity of CO2•- with electron-poor olefins results in either single electron reduction or alkene hydrocarboxylation, where substrate reduction potentials can be utilized to predict reaction outcome.
Project description:FeII 4L6 tetrahedral cage 1 was prepared from a redox-active dicationic naphthalenediimide (NDI) ligand. The +20 charge of the cage makes it a good host for anionic guests, with no binding observed for neutral aromatic molecules. Following reduction by Cp2Co, the cage released anionic guests; subsequent oxidation by AgNTf2 led to re-uptake of anions. In its reduced form, however, 1 was observed to bind neutral C60. The fullerene guest was subsequently ejected following cage re-oxidation. The guest release process was found to be facilitated by anion-mediated transport from organic to aqueous solution. Cage 1 thus employs electron transfer as a stimulus to control the uptake and release of both neutral and charged guests, through distinct pathways.
Project description:Lithium-encapsulated [60]fullerene Li@C60, namely, lithium-ion-encapsulated [60]fullerene radical anion Li+@C60˙-, was synthesised by electrochemical reduction of lithium-ion-encapsulated [60]fullerene trifluoromethanesulfonylimide salt [Li+@C60](TFSI-). The product was fully characterised by UV-vis-NIR absorption and ESR spectroscopy as well as single-crystal X-ray analysis for the co-crystal with nickel octaethylporphyrin. In solution Li@C60 exists as a monomer form dominantly, while in the crystal state it forms a dimer (Li@C60-Li@C60) through coupling of the C60 radical anion cage. These structural features were supported by DFT calculations at the M06-2X/6-31G(d) level of theory.
Project description:The Li+ ion diffusion characteristics of V- and Nb-doped LiFePO4 were examined with respect to undoped LiFePO4 using muon spectroscopy (µSR) as a local probe. As little difference in diffusion coefficient between the pure and doped samples was observed, offering DLi values in the range 1.8-2.3 × 10-10 cm2 s-1, this implied the improvement in electrochemical performance observed within doped LiFePO4 was not a result of increased local Li+ diffusion. This unexpected observation was made possible with the µSR technique, which can measure Li+ self-diffusion within LiFePO4, and therefore negated the effect of the LiFePO4 two-phase delithiation mechanism, which has previously prevented accurate Li+ diffusion comparison between the doped and undoped materials. Therefore, the authors suggest that µSR is an excellent technique for analysing materials on a local scale to elucidate the effects of dopants on solid-state diffusion behaviour.
Project description:Given their very negative redox potential (e.g., Li+ → Li(0), -3.04 V; K+ → K(0), -2.93 V), chemical reduction of Group-1 metal cations is one of the biggest challenges in inorganic chemistry: they are widely accepted as irreducible in the synthetic chemistry regime. Their reduction usually requires harsh electrochemical conditions. Herein we suggest a new strategy: via a heterobimetallic electride intermediate and using the nonbinding "free" electron as reductant. Based on our previously reported K+[LiN(SiMe3)2]e- heterobimetallic electride, we demonstrate the reducibility of both K+ and Li+ cations. Moreover, we find that external Lewis base ligands, namely tris[2-(dimethylamino)ethyl]amine (Me6Tren) or 2,2,2-cryptand, can exert a level of reducing selectivity by preferably binding to Li+ (Me6Tren) or K+ (2,2,2-cryptand), hence pushing the electron to the other cation.
Project description:Conventional Li-ion battery intercalation cathodes leverage charge compensation that is formally associated with redox on the transition metal. Employing the anions in the charge compensation mechanism, so-called anion redox, can yield higher capacities beyond the traditional limitations of intercalation chemistry. Here, we aim to understand the structural considerations that enable anion oxidation and focus on processes that result in structural changes, such as the formation of persulfide bonds. Using a Li-rich metal sulfide as a model system, we present both first-principles simulations and experimental data that show that cation vacancies are required for anion oxidation. First-principles simulations show that the oxidation of sulfide to persulfide only occurs when a neighboring vacancy is present. To experimentally probe the role of vacancies in anion redox processes, we introduce vacancies into the Li2TiS3 phase while maintaining a high valency of Ti. When the cation sublattice is fully occupied and no vacancies can be formed through transition metal oxidation, the material is electrochemically inert. Upon introduction of vacancies, the material can support high degrees of anion redox, even in the absence of transition metal oxidation. The model system offers fundamental insights to deepen our understanding of structure-property relationships that govern reversible anion redox in sulfides and demonstrates that cation vacancies are required for anion oxidation, in which persulfides are formed.
Project description:A new salt of lithium trifluoro(perfluoro-tert-butyloxyl)borate (LiTFPFB) which possesses a bulky fluoroalkoxyl functional group in the borate anion has been synthesized for high energy lithium metal batteries. The presence of the bulky fluoroalkoxyl group in the borate anion of LiTFPFB can facilitate ion dissociation and in situ generate a protective film on the Li anode. As a result, LiTFPFB possesses a dramatically improved ionic conductivity and LiFePO4/Li cells using 1.0 M LiTFPFB/PC electrolyte exhibit improved capacity retention especially upon cycling at elevated temperature (60 °C). Ex situ surface analysis reveals that a protective film is formed on the lithium metal anode, which can inhibit further decomposition of the electrolyte. Furthermore, the LiTFPFB based electrolyte also imparts an excellent cycling performance to LiCoO2/Li metal cells for 500 cycles. The outstanding performance of the LiTFPFB salt demonstrates that it is a very promising baseline salt for next generation lithium metal batteries.
Project description:Electrolyte additives are indispensable to enhance the performance of Li-ion batteries. Lithium bis(oxalato)borate (LiBOB) has been explored for many years, as it improves both cathode and anode performance. No consensus regarding its reaction mechanisms has, however, been established. A model operando study combining attenuated total reflection infrared spectroscopy (ATR-FTIR), electrochemical quartz crystal microbalance (EQCM), and online electrochemical mass spectrometry (OEMS) is herein presented to elucidate LiBOB reduction and electrode/electrolyte interphases thus formed. Reduction of the BOB- ion sets in at ∼1.8 V with solid lithium oxalate and soluble oxalatoborates as the main products. The reduced BOB- ion also reacts with itself and its environment to evolve CO2, which in turn impacts the interphase formed on the negative electrode. This study provides further insights into the reduction pathways of LiBOB and how they contribute to the interphase formation.
Project description:V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO(2) glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO(2) glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods.