Project description:The Hedgehog (Hh) signaling pathway governs complex developmental processes, including proliferation and patterning within diverse tissues. These activities rely on a tightly regulated transduction system that converts graded Hh input signals into specific levels of pathway activity. Uncontrolled activation of Hh signaling drives tumor initiation and maintenance. However, recent entry of pathway-specific inhibitors into the clinic reveals mixed patient responses and thus prompts further exploration of pathway activation and inhibition. In this review, we share emerging insights into regulated and oncogenic Hh signaling, supplemented with updates on the development and use of Hh pathway-targeted therapies.
Project description:Obesity is a known risk factor for the development of pancreatic cancer, one of the deadliest types of malignancies. In recent years it has become clear that the pancreatic microenvironment is critically involved and a contributing factor in accelerating pancreatic neoplasia. In this context obesity-associated chronic inflammation plays an important role. Among several immune cells, macrophages have been shown to contribute to obesity-induced tissue inflammation. This review article summarizes the current knowledge about the role of pancreatic macrophages in early pancreatic cancer development. It describes the heterogenous origin and mixture of pancreatic macrophages, their role in pancreatic endocrine and exocrine pathology, and the impact of obesity on islet and stromal macrophages. A model is postulated, by which during obesity monocytes are recruited into the pancreas, where they are polarized into pro-inflammatory macrophages that drive early pancreatic neoplasia. This occurs in the presence of local inflammatory, metabolic, and endocrine signals. A stronger appreciation and more detailed knowledge about the role of macrophages in early pancreatic cancer development will lead to innovative preventive or interceptive strategies.
Project description:PurposePancreatic cancer is one of the deadliest cancers worldwide. The extracellular matrix (ECM) microenvironment affects the drug sensitivity and prognosis of pancreatic cancer patients. This study constructed an 8-genes pancreatic ECM scoring (PECMS) model, to classify the ECM features of pancreatic cancer, analyze the impact of ECM features on survival and drug sensitivity, and mine key molecules that influence ECM features in pancreatic cancer.MethodsGSVA score calculation and clustering were performed in TCGA-PAAD patients. Lasso regression was used to construct the PECMS model. The association between PECMS and patient survival was analyzed and validated in the CPTAC-3 dataset of TCGA and our single-center retrospective cohort. The relationships between PECMS and features of the matrix microenvironment were analyzed. Finally, PECMS feature genes were screened and verified in pancreatic cancer specimens to select key genes associated with the ECM microenvironment.ResultThe survival of the PECMS-high group was significantly worse. The PECMS-high group showed higher oxidative stress levels, lower levels of antigen presentation- and MHC-I molecule-related pathways, and less immune effector cell infiltration. Data from IMvigor-210 cohort suggested that PECMS-low group patients were more sensitive to immune checkpoint blockers. The PECMS score was negatively correlated with chemotherapy drug sensitivity. The negative association of PECMS with survival and drug sensitivity was validated in our retrospective cohort. KLHL32 expression predicted lower oxidative stress level and more immune cells infiltrate in pancreatic cancer.ConclusionPECMS is an effective predictor of prognosis and drug sensitivity in pancreatic cancer patients. KLHL32 may play an important role in the construction of ECM, and the mechanism is worth further study.
Project description:Proper maintenance of mature cellular phenotypes is essential for stable physiology, suppression of disease states, and resistance to oncogenic transformation. We describe the transcriptional regulatory roles of four key DNA-binding transcription factors (Ptf1a, Nr5a2, Foxa2 and Gata4) that sit at the top of a regulatory hierarchy controlling all aspects of a highly differentiated cell-type-the mature pancreatic acinar cell (PAC). Selective inactivation of Ptf1a, Nr5a2, Foxa2 and Gata4 individually in mouse adult PACs rapidly altered the transcriptome and differentiation status of PACs. The changes most emphatically included transcription of the genes for the secretory digestive enzymes (which conscript more than 90% of acinar cell protein synthesis), a potent anabolic metabolism that provides the energy and materials for protein synthesis, suppressed and properly balanced cellular replication, and susceptibility to transformation by oncogenic KrasG12D. The simultaneous inactivation of Foxa2 and Gata4 caused a greater-than-additive disruption of gene expression and uncovered their collaboration to maintain Ptf1a expression and control PAC replication. A measure of PAC dedifferentiation ranked the effects of the conditional knockouts as Foxa2+Gata4 > Ptf1a > Nr5a2 > Foxa2 > Gata4. Whereas the loss of Ptf1a or Nr5a2 greatly accelerated Kras-mediated transformation of mature acinar cells in vivo, the absence of Foxa2, Gata4, or Foxa2+Gata4 together blocked transformation completely, despite extensive dedifferentiation. A lack of correlation between PAC dedifferentiation and sensitivity to oncogenic KrasG12D negates the simple proposition that the level of differentiation determines acinar cell resistance to transformation.
Project description:Liver cancer represents a major health problem worldwide with growing incidence and high mortality, hepatocellular carcinoma (HCC) being the most frequent. Hepatocytes are likely the cellular origin of most HCCs through the accumulation of genetic alterations, although hepatic progenitor cells (HPCs) might also be candidates in specific cases, as discussed here. HCC usually develops in a context of chronic inflammation, fibrosis, and cirrhosis, although the role of fibrosis is controversial. The interplay between hepatocytes, immune cells and hepatic stellate cells is a key issue. This review summarizes critical aspects of the liver tumor microenvironment paying special attention to platelets as new key players, which exert both pro- and anti-tumor effects, determined by specific contexts and a tight regulation of platelet signaling. Additionally, the relevance of specific signaling pathways, mainly HGF/MET, EGFR and TGF-β is discussed. HGF and TGF-β are produced by different liver cells and platelets and regulate not only tumor cell fate but also HPCs, inflammation and fibrosis, these being key players in these processes. The role of C3G/RAPGEF1, required for the proper function of HGF/MET signaling in HCC and HPCs, is highlighted, due to its ability to promote HCC growth and, regulate HPC fate and platelet-mediated actions on liver cancer.
Project description:Chemotherapy is routinely used in cancer treatment to eliminate primary and metastatic tumor cells. However, tumors often display or develop resistance to chemotherapy. Mechanisms of chemoresistance can be either tumor cell autonomous or mediated by the tumor surrounding non-malignant cells, also known as stromal cells, which include fibroblasts, immune cells, and cells from the vasculature. Therapies targeting cancer cells have shown limited effectiveness in tumors characterized by a rich tumor stroma. Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are the most abundant non-cancerous cells in the tumor stroma and have emerged as key players in cancer progression, metastasis and resistance to therapies. This review describes the recent advances in our understanding of how CAFs and TAMs confer chemoresistance to tumor cells and discusses the therapeutic opportunities of combining anti-tumor with anti-stromal therapies. The continued elucidation of the mechanisms by which TAMs and CAFs mediate resistance to therapies will allow the development of improved combination treatments for cancer patients.
Project description:Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer (PC) that commonly emerges through a transdifferentiation process from prostate adenocarcinoma and evades conventional therapies. Extensive molecular research has revealed factors that drive lineage plasticity, uncovering novel therapeutic targets to be explored. A diverse array of targeting agents is currently under evaluation in pre-clinical and clinical studies with promising results in suppressing or reversing the neuroendocrine phenotype and inhibiting tumor growth and metastasis. This new knowledge has the potential to contribute to the development of novel therapeutic approaches that may enhance the clinical management and prognosis of this lethal disease. In the present review, we discuss molecular players involved in the neuroendocrine phenotype, and we explore therapeutic strategies that are currently under investigation for NEPC.
Project description:Mediator complex subunit 29 (MED29) is part of a large multiprotein coactivator complex that mediates regulatory signals from gene-specific activators to general transcription machinery in RNA polymerase II mediated transcription. We previously found that MED29 is amplified and overexpressed in pancreatic cancer and that MED29 silencing leads to decreased cell survival in PANC-1 pancreatic cancer cells with high MED29 expression. Here we further demonstrate decreased migration, invasion and colony formation in PANC-1 cells after MED29 silencing. Unexpectedly, lentiviral-based overexpression of MED29 led to decreased proliferation of NIH/3T3 cells as well as MIAPaCa-2 pancreatic cancer cells with low endogenous expression. More importantly, subcutaneous inoculation of the MED29-transduced pancreatic cancer cells into immuno-compromised mice resulted in dramatic tumor suppression. The mock-control mice developed large tumors, whereas the animals with MED29-xenografts showed both decreased tumor incidence and a major reduction in tumor size. Gene expression analysis in the MED29-transduced pancreatic cancer cells revealed differential expression of genes involved in control of cell cycle and cell division. The observed gene expression changes are expected to modulate the cell cycle in a way that leads to reduced cell growth, explaining the in vivo tumor suppressive phenotype. Taken together, these data implicate MED29 as an important regulator of key cellular functions in pancreatic cancer with both oncogenic and tumor suppressive characteristics. Such a dualistic role appears to be more common than previously thought and is likely to depend on the genetic background of the cancer cells and their surrounding environment.
Project description:Hepatocellular carcinoma (HCC), the major form of primary liver cancer, is one of the most deadly human cancers. The pathogenesis of HCC is frequently linked with continuous hepatocyte death, inflammatory cell infiltration and compensatory liver regeneration. Understanding the molecular signaling pathways driving or mediating these processes during liver tumorigenesis is important for the identification of novel therapeutic targets for this dreadful disease. The classical IKKβ-dependent NF-κB signaling pathway has been shown to promote hepatocyte survival in both developing and adult livers. In addition, it also plays a crucial role in liver inflammatory responses by controlling the expression of an array of growth factors and cytokines. One of these cytokines is IL-6, which is best known for its role in the liver acute phase response. IL-6 exerts many of its functions via activation of STAT3, a transcription factor found to be important for HCC development. This review will focus on recent studies on the roles of NF-κB and STAT3 in liver cancer. Interactions between the two pathways and their potential as therapeutic targets will also be discussed.
Project description:Immune checkpoint inhibitors (ICIs) have changed therapeutic algorithms in several malignancies, although intrinsic and secondary resistance is still an issue. In this context, the dysregulation of immuno-metabolism plays a leading role both in the tumor microenvironment (TME) and at the host level. In this review, we summarize the most important immune-metabolic factors and how they could be exploited therapeutically. At the cellular level, an increased concentration of extracellular adenosine as well as the depletion of tryptophan and uncontrolled activation of the PI3K/AKT pathway induces an immune-tolerant TME, reducing the response to ICIs. Moreover, aberrant angiogenesis induces a hypoxic environment by recruiting VEGF, Treg cells and immune-suppressive tumor associated macrophages (TAMs). On the other hand, factors such as gender and body mass index seem to affect the response to ICIs, while the microbiome composition (and its alterations) modulates both the response and the development of immune-related adverse events. Exploiting these complex mechanisms is the next goal in immunotherapy. The most successful strategy to date has been the combination of antiangiogenic drugs and ICIs, which prolonged the survival of patients with non-small-cell lung cancer (NSCLC) and hepatocellular carcinoma (HCC), while results from tryptophan pathway inhibition studies are inconclusive. New exciting strategies include targeting the adenosine pathway, TAMs and the microbiota with fecal microbiome transplantation.