Project description:Animal gastrointestinal tracts are populated by highly diverse and complex microbiotas. The gut microbiota influences the bioavailability of dietary components and is closely associated with physiological processes in the host. Clostridium butyricum reportedly improves growth performance and affects the gut microbiota and immune functions in post-weaning piglets. However, the effects of C. butyricum on finishing pigs remain unclear. Therefore, we herein investigated the effects of C. butyricum MIYAIRI 588 (CBM588) on the gut microbiota of finishing pigs. 16S rRNA gene sequencing was performed using fecal samples and ileal, cecal, and colonic contents collected after slaughtering. The α-diversity of the small intestinal microbiota was lower than that of the large intestinal microbiota, whereas β-diversity showed different patterns depending on sample collection sites. The administration of CBM588 did not significantly affect the α- or β-diversity of the microbiotas of fecal and intestinal content samples regardless of the collection site. However, a linear discriminant ana-lysis Effect Size revealed that the relative abundance of Lactobacillaceae at the family level, Bifidobacterium at the order level, and Lactobacillus ruminis and Bifidobacterium pseudolongum at the species level were higher in the fecal samples and cecal and colonic contents of the treatment group than in those of the control group. Therefore, the administration of CBM588 to finishing pigs affected the composition of the gut microbiota and increased the abundance of bacteria that are beneficial to the host. These results provide important insights into the effects of probiotic administration on relatively stable gut microbial ecosystems.
Project description:Feed is the most expensive facet of commercial pork production. In order to reduce feed costs, using high-fiber ingredients has become a common practice. Moderate levels of fiber can maintain intestinal physiological function and promote intestinal health. Oxidative stress is linked to impaired nutrient absorption and growth performance. This study investigated the effects of high-fiber (5.26% crude fiber) and low-fiber (2.46% crude fiber) diets on growth performance and intestinal oxidative stress parameters in growing-finishing pigs. Forty growing pigs with initial body weight (27.07 ± 1.26 kg) were randomly assigned to 2 treatment groups with 10 replicates of 2 pigs per pen. Pigs were weighed on day 35, 42, and 70. The feed intake was recorded daily to calculate growth performance parameters. On day 70, eight pigs in each treatment group were randomly selected and euthanized to obtain jejunum to measure oxidative stress status. Pigs fed a high-fiber diet were heavier than those fed a low-fiber diet on days 35, 42, and 70 (P < 0.05). During the whole feeding period, pigs fed a high-fiber diet had a higher average daily gain than those fed a low-fiber diet (P < 0.05). The low-fiber diet resulted in increased levels of malondialdehyde (P < 0.05) in the jejunum, suggesting that the low-fiber diet contributed to oxidative stress in the jejunum. The low-fiber diet also led to a significant increase in glutathione and oxidized glutathione levels (P < 0.05) in the jejunum, indicating that pigs fed a low-fiber diet needed to produce more antioxidant substances to cope with oxidative stress in the intestine. This was accompanied by a significant increase in the expression of glutathione synthesizing enzymes in the jejunum of the low-fiber group (P < 0.05). These results suggest that the high-fiber diet can improve growth performance and maintain intestinal health in growing-finishing pigs by reducing intestinal oxidative stress.
Project description:BackgroundThis study was conducted to determine the effects of different dietary protein levels and amino acids supplementation patterns in low protein diets on the growth performance, carcass characteristics and nitrogen excretion in growing-finishing pigs.Forty-two barrows (25.00 ± 0.39 kg) were randomly assigned to 7 diets. Diet 1: the high crude protein diet with balanced for 10 essential amino acids (EAAs). Diet 2: the medium crude protein diet with 2% (approx) decreased protein level of Diet 1 and balanced 10 EAAs. Diet 3: the low crude protein diet with 4% decreased protein level of Diet 1 and balanced 10 EAAs. The protein levels of Diet 4, 5, 6 and 7 were the same as that of Diet 3. Diet 4 was only balanced for lysine (Lys), methionine (Met), threonine (Thr) and tryptophan (Trp); Diet 5 and 6 were further supplemented with extra isoleucine (Ile) or valine (Val), respectively; Diet 7 was further supplemented with extra Ile + Val.ResultsOver the 112 days trial, the reduction of dietary protein by 2% or 4% with balanced10 EAAs significantly decreased nitrogen excretion (P < 0.05), but had no effects on growth performance and carcass characteristics (P > 0.05). In low protein diet, Val supplementation significantly increased body weight gain at 25-50 kg phase (P < 0.05), while Ile supplementation at 75-100 kg phase and 100-125 kg phase significantly reduced the ratio of feed to gain (P < 0.05). No effect of different dietary protein levels and amino acids supplementation patterns in low protein diets on carcass characteristics was observed (P > 0.05). The total N excretion of pigs supplemented with only Lys, Met, Thr and Trp was numerically higher than that of pigs fed with extra Ile, or Val, or Ile + Val diets.ConclusionIn low protein diet, Val is more required than Ile in the early growing phage (25-50 kg), while Ile becomes more required in the late growing and finishing phage (75-125 kg).
Project description:This study investigated the differences in bone growth and turnover and calcium (Ca) and phosphorus (P) uptake among three different breeds of growing-finishing pigs. Ninety healthy Duroc, Xiangcun black (XCB), and Taoyuan black (TYB) pigs (30 pigs per breed) at 35 day-old (D) with the average body weight (BW) of their respective breed were assigned and raised to 185 D. The results showed that Duroc pigs had higher bone weight and length than the XCB and TYB pigs at 80, 125, and 185 D and the bone index at 185 D (p < 0.05). Duroc pigs had higher bone mineral densities (femur and tibia) compared with the other two breeds at 80 D and 125 D, whereas TYB pigs had higher mineral content and bone breaking load (rib) compared with the other two breeds at 185 D (p < 0.05). The bone morphogenetic protein-2 and osteocalcin concentrations were higher, and TRACP5b concentration was lower in serum of TYB pigs at 125 D (p < 0.05). Meanwhile, 1,25-dihydroxyvitamin D3, parathyroid hormone, thyroxine, and fibroblast growth factor 23 concentrations were higher in serum of TYB pigs at 185 D (p < 0.05). The TYB pigs had higher apparent total tract digestibility of P at 80 D and 185 D and bone Ca and P contents at 185 D in comparison to the Duroc pigs (p < 0.05). Furthermore, gene expressions related to renal uptake of Ca and P differed among the three breeds of pigs. Collectively, Duroc pigs have higher bone growth, whereas TYB pigs have a higher potential for mineral deposition caused by more active Ca uptake.
Project description:This study investigated the different addition levels of iron (Fe) in growing-finishing pigs and the effect of different Fe levels on growth performance, hematological status, intestinal barrier function, and intestinal digestion. A total of 1,200 barrows and gilts ([Large White × Landrace] × Duroc) with average initial body weight (BW; 27.74 ± 0.28 kg) were housed in 40 pens of 30 pigs per pen (gilts and barrows in half), blocked by BW and gender, and fed five experimental diets (eight replicate pens per diet). The five experimental diets were control diet (basal diet with no FeSO4 supplementation), and the basal diet being supplemented with 150, 300, 450, or 600 mg/kg Fe as FeSO4 diets. The trial lasted for 100 d and was divided into the growing phase (27 to 60 kg of BW) for the first 50 d and the finishing phase (61 to 100 kg of BW) for the last 50 d. The basal diet was formulated with an Fe-free trace mineral premix and contained 203.36 mg/kg total dietary Fe in the growing phase and 216.71 mg/kg in the finishing phase based on ingredient contributions. And at the end of the experiment, eight pigs (four barrows and four gilts) were randomly selected from each treatment (selected one pig per pen) for digesta, blood, and intestinal samples collection. The results showed that the average daily feed intake (P = 0.025), average daily gain (P = 0.020), and BW (P = 0.019) increased linearly in the finishing phase of pigs fed with the diets containing Fe. On the other hand, supplementation with different Fe levels in the diet significantly increased serum iron and transferrin saturation concentrations (P < 0.05), goblet cell numbers of duodenal villous (P < 0.001), and MUC4 mRNA expression (P < 0.05). The apparent ileal digestibility (AID) of amino acids (AA) for pigs in the 450 and 600 mg/kg Fe groups was greater (P < 0.05) than for pigs in the control group. In conclusion, dietary supplementation with 450 to 600 mg/kg Fe improved the growth performance of pigs by changing hematological status and by enhancing intestinal goblet cell differentiation and AID of AA.
Project description:BackgroundThe interaction of the gut microbiota with key metabolic and physiological processes may be associated with poor growth outcomes in animals born with intrauterine growth restriction (IUGR).ResultsGrowth performance, plasma hormone concentrations, and intestinal microbiota composition were analyzed in IUGR pigs and in normal birth weight (NBW) pigs when the NBW pigs reached 25, 50, and 100 kg of body weight (BW). Compared to NBW pigs, IUGR pigs had lower initial, weaned, and final BW, and lower average daily gain and average daily feed intake in all the considered time points. In the 25 kg BW group, IUGR pigs had higher concentrations of plasma ghrelin and pancreatic polypeptide (PP), but lower insulin concentration than NBW pigs, while the situation was reversed in the 50 kg BW group. As compared to NBW pigs, IUGR pigs had higher microbial alpha diversity in the jejunum and ileum; in the 50 and 100 kg BW groups, IUGR pigs had higher Firmicutes abundance but lower Proteobacteria abundance in the jejunum, and lower Lactobacillus abundance in the jejunum and ileum; in the 25 kg BW group, IUGR pigs showed higher unclassified Ruminococcaceae abundance in the ileum; and in 25 and 50 kg BW groups, IUGR pigs showed lower Ochrobactrum abundance in the jejunum. Spearman's correlation revealed that Lactobacillus was negatively correlated with growth performance, while unclassified Ruminococcaceae was positively correlated. Predictive metagenomic analysis detected significantly different expression of genes in the intestinal microbiota between IUGR and NBW pigs, suggesting different metabolic capabilities between the two groups.ConclusionsGrowing-finishing IUGR pigs showed lower growth performance, higher microbial alpha diversity, and differences in plasma hormone concentrations compared to NBW pigs. Alterations in the abundance of Firmicutes, Proteobacteria, Ruminococcaceae, Lactobacillus, and Ochrobactrum in the small intestine may be associated with IUGR, and may therefore serve as a future target for gut microbiota intervention in growing-finishing IUGR pigs.
Project description:This study was conducted to evaluate the effects of sequential feeding technique in two genetic lines (GL; Line A [cross having a greater proportion of Pietrain] and Line B [cross having a lower proportion of Pietrain]) of growing-finishing pigs reared under daily cyclic high ambient temperature conditions. Seventy-eight castrated male pigs (22 ± 2.5 kg BW) were housed in a single group and were allocated to one of the three feeding programs: control (CON, 24 h control diet), high-fat/low-crude protein (HF/LP, 24 h high-fat/low-crude protein diet), and sequential feeding (SEQ, control diet from 1800 to 1000 h and HF/LP diet from 1001 to 1759 h). Cyclic high ambient temperature was induced by exposing the pigs to 22ºC ambient temperature from 1800 to 1000 h (time-period 22ºC, TP22) and to 30ºC from 1001 to 1759 h (TP30). The experimental period lasted 84 days and was divided into 3 growth phases, growing 1 (from day 0 to 20), growing 2 (from day 21 to 48) and finishing (from day 49 to 83). Feed intake was recorded in real time using an automatic feeder system. Pigs were weighed at the beginning and end of each experimental phase. Animal body composition was measured through dual-energy X-ray absorptiometry on days 0, 35, and 70. The ambient temperature averaged 22.3 ± 0.4ºC during TP22 and 30.2 ± 0.5ºC during TP30, characterizing the condition of daily ambient temperature variation that which pigs are usually exposed in tropical climate areas. During growing phase 1, the feeding programs had negligible effects on pig performance (P > 0.05), whereas during growing phase 2, ADG was greater in SEQ than in CON pigs (7%; P = 0.04). During the finishing phase, HF/LP pigs had greater ADFI (+ 10%) and ADG (+ 8%) than CON pigs. Lean mass and gain did not differ among feeding programs (P > 0.05). Overall, fat mass and gain were similar between SEQ and HF/LP pigs (P > 0.05), and both were greater than those of CON pigs (P < 0.05). On the basis of pig performance per phase, the supply of high-fat/low-crude protein diets (SEQ and HF/LP feeding) improved the performance of pigs under daily cyclic high ambient temperature. However, the use of these techniques resulted in fatter carcasses and in higher energy cost of gain. Finally, pigs with greater proportion of Pietrain genes had decreased growth performance in our experimental conditions.
Project description:This study was conducted to evaluate the effects of feeding fermented wheat bran (FWB) and yeast culture (YC) on growth performance, immune levels, and intestinal microflora in growing-finishing pigs. In total, 96 crossbred pigs were randomly distributed into four treatments with four replicates pens and six pigs per pen. This study was performed using a 2 × 2 factor design: 1) CON (basal diet), 2) FWB (basal diet + 5% FWB), 3) YC (basal diet + 2% YC), and 4) FWB + YC (basal diet + 5% FWB + 2% YC). Dietary FWB supplementation significantly increased the average daily gain and significantly decreased the feed gain ratio of growing-finishing pigs (P < 0.05). Supplementation of FWB and YC improved the immune capacity and reduced the inflammation level of growing-finishing pigs (P < 0.05). In addition, pigs fed FWB, YC, and FWB + YC diets showed better intestinal development and morphology compared with those CON pigs. The relative abundance of Streptococcus in the FWB group was significantly lower than that in the CON group (P < 0.05), and the relative abundance of probiotics (unclassified_f_Lachnospiraceae, Turicibacter) increased significantly (P < 0.05). Furthermore, the relative abundance of probiotics (Lactobacillus, norank_f_Muribaculaceae) in the YC group was significantly increased compared with the CON group (P < 0.05). The results of this study observed positive effects of FWB and YC on growing-finishing pigs, which provides insights into the application of biological feed in swine industry.
Project description:The present experiment was conducted to determine the effect of bile acids (BAs) supplementation on growth performance, BAs profile, fecal microbiome, and serum metabolomics in growing-finishing pigs. A total of 60 pigs [Duroc × (Landrace × Yorkshire)] with an average body weight of 27.0 ± 1.5 kg were selected and allotted into one of 2 groups (castrated male to female ratio = 1:1), with 10 replicates per treatment and 3 pigs per replicate. The 2 treatments were the control group (control) and a porcine bile extract-supplemented group dosed at 0.5 g/kg feed (BA). After a 16-wk treatment, growth performance, BAs profiles in serum and feces, and fecal microbial composition were determined. An untargeted metabolomics approach using gas chromatography with a time-of-flight mass spectrometer was conducted to identify the metabolic pathways and associated metabolites in the serum of pigs. We found that BAs supplementation had no effect on the growth performance of the growing-finishing pig. However, it tended to increase the gain-to-feed ratio for the whole period (P = 0.07). BAs supplementation resulted in elevated serum concentrations of secondary bile acids, including hyodeoxycholic acid (HDCA), glycoursodeoxycholic acid, and tauro-hyodeoxycholic acid, as well as fecal concentration of HDCA (P < 0.05). Fecal microbiota analysis revealed no differences in alpha and beta diversity indices or the relative abundance of operational taxonomic units (OTUs) at both phylum and genus levels between groups. Metabolic pathway analysis revealed that the differential metabolites between control and BA groups are mainly involved in purine metabolism, ether lipid metabolism, glycerophospholipid metabolism, and amino sugar and nucleotide sugar metabolism, as well as primary bile acid biosynthesis. Our findings indicate that BAs supplementation tended to improve the feed efficiency, and significantly altered the BA profile in the serum and feces of growing-finished pigs, regardless of any changes in the gut microbial composition. The altered metabolic pathways could potentially play a vital role in improving the feed efficiency of growing-finished pigs with BAs supplementation.
Project description:This study was conducted to investigate the effect of protease inclusion level in two different ages on the apparent (AID) and standardized (SID) ileal digestibility of crude protein (CP) and amino acids (AAs) in soybean meal (SBM) fed to growing-finishing pigs. Ten cannulated pigs (21 ± 2 kg) were assigned to experimental diets in a duplicate 5 × 5 Latin square design. In phase I (23 to 30 kg-pigs, 90 ± 17 d of age), ileal digesta was collected in five periods of 7 d (5 d adaptation and 2 d ileal digesta collection). In phase II, (50 to 65 kg-pigs, 140 ± 17 d of age), ileal digesta was collected in 5 more periods of 7 d. For both phases, a corn starch-based diet was formulated with SBM as the sole source of CP and AA and containing titanium as an indigestible marker. Protease was supplemented at 0, 15,000, 30,000, and 45,000 NFP/kg of feed (0, 25, 50, and 75 g/ton of ProAct 360). A nitrogen-free diet was used to estimate basal ileal endogenous AA losses. Pigs were fed at 4% of their body weight, which was adjusted at the end of each period. Orthogonal polynomial contrasts were used to determine the linear and quadratic effects of dietary protease supplementation in each phase. In phase I, increasing levels of protease resulted in a linear increase (P < 0.10) in SID for the 7/11 indispensable AA (Except Arg, His, Met + Cys, and Trp) and the average of all dispensable AA. In phase II, the SID of Ile, Leu, Met, Met + Cys, Val, the average of all indispensable AA, and 4/7 dispensable AA were quadratically increased (P < 0.10). In most cases, supplementation with 30,000 NFP/kg of feed (50 g/ton) resulted in the greatest increase in AA digestibility. However, the linear response in phase I for some AA suggests that diets for younger pigs could be supplemented with a greater level (45,000 NFP/kg or 75 g/ton of feed). Interestingly, younger pigs had consistently increased (P < 0.10) SID of CP and 15/18 AA (Except Arg, Cys, and Ser), being ~5.6% greater for indispensable AA when compared to older pigs. In conclusion, dietary protease supplementation can increase the SID of AA in SBM in both growing and finishing periods. Pig age can potentially influence AA digestibility, possibly related to a greater ileal endogenous AA flow in younger pigs. However, this fact warrants further investigation.