Ontology highlight
ABSTRACT: Background
There are abundant studies on COVID-19 but few on its impact on hepatitis E. We aimed to assess the effect of the COVID-19 countermeasures on the pattern of hepatitis E incidence and explore the application of time series models in analyzing this pattern.Methods
Our pivotal idea was to fit a pre-COVID-19 model with data from before the COVID-19 outbreak and use the deviation between forecast values and actual values to reflect the effect of COVID-19 countermeasures. We analyzed the pattern of hepatitis E incidence in China from 2013 to 2018. We evaluated the fitting and forecasting capability of 3 methods before the COVID-19 outbreak. Furthermore, we employed these methods to construct pre-COVID-19 incidence models and compare post-COVID-19 forecasts with reality.Results
Before the COVID-19 outbreak, the Chinese hepatitis E incidence pattern was overall stationary and seasonal, with a peak in March, a trough in October, and higher levels in winter and spring than in summer and autumn, annually. Nevertheless, post-COVID-19 forecasts from pre-COVID-19 models were extremely different from reality in sectional periods but congruous in others.Conclusions
Since the COVID-19 pandemic, the Chinese hepatitis E incidence pattern has altered substantially, and the incidence has greatly decreased. The effect of the COVID-19 countermeasures on the pattern of hepatitis E incidence was temporary. The incidence of hepatitis E was anticipated to gradually revert to its pre-COVID-19 pattern.
SUBMITTER: Qin Y
PROVIDER: S-EPMC10967115 | biostudies-literature | 2024 Mar
REPOSITORIES: biostudies-literature

Qin Yajun Y Peng Haiyang H Li Jinhao J Gong Jianping J
BMC infectious diseases 20240327 1
<h4>Background</h4>There are abundant studies on COVID-19 but few on its impact on hepatitis E. We aimed to assess the effect of the COVID-19 countermeasures on the pattern of hepatitis E incidence and explore the application of time series models in analyzing this pattern.<h4>Methods</h4>Our pivotal idea was to fit a pre-COVID-19 model with data from before the COVID-19 outbreak and use the deviation between forecast values and actual values to reflect the effect of COVID-19 countermeasures. We ...[more]