Project description:Fe-N-C catalysts with high O2 reduction performance are crucial for displacing Pt in low-temperature fuel cells. However, insufficient understanding of which reaction steps are catalyzed by what sites limits their progress. The nature of sites were investigated that are active toward H2 O2 reduction, a key intermediate during indirect O2 reduction and a source of deactivation in fuel cells. Catalysts comprising different relative contents of FeNx Cy moieties and Fe particles encapsulated in N-doped carbon layers (0-100 %) show that both types of sites are active, although moderately, toward H2 O2 reduction. In contrast, N-doped carbons free of Fe and Fe particles exposed to the electrolyte are inactive. When catalyzing the ORR, FeNx Cy moieties are more selective than Fe particles encapsulated in N-doped carbon. These novel insights offer rational approaches for more selective and therefore more durable Fe-N-C catalysts.
Project description:Hydrogen peroxide (H2O2) is a key chemical for many industrial applications, yet it is primarily produced by the energy-intensive anthraquinone process. As part of the Power-to-X scenario of electrosynthesis, the controlled oxygen reduction reaction (ORR) can enable the decentralized and renewable production of H2O2. We have previously demonstrated that self-supported electrocatalytic materials derived from polyaniline by chemical oxidative polymerization have shown promising activity for the reduction of H2O to H2 in alkaline media. Herein, we interrogate whether such materials could also catalyze the electro-conversion of O2-to-H2O2 in an alkaline medium by means of a selective two-electron pathway of ORR. To probe such a hypothesis, nine sets of polyaniline-based materials were synthesized by controlling the polymerization of aniline in the presence or not of nickel (+II) and cobalt (+II), which was followed by thermal treatment under air and inert gas. The selectivity and faradaic efficiency were evaluated by complementary electroanalytical methods of rotating ring-disk electrode (RRDE) and electrolysis combined with spectrophotometry. It was found that the presence of cobalt species inhibits the performance. The selectivity towards H2O2 was 65-80% for polyaniline and nickel-modified polyaniline. The production rate was 974 ± 83, 1057 ± 64 and 1042 ± 74 µmolH2O2 h-1 for calcined polyaniline, calcined nickel-modified polyaniline and Vulcan XC 72R (state-of-the-art electrocatalyst), respectively, which corresponds to 487 ± 42, 529 ± 32 and 521 ± 37 mol kg-1cat h-1 (122 ± 10, 132 ± 8 and 130 ± 9 mol kg-1cat cm-2) for faradaic efficiencies of 58-78%.
Project description:Au nanoparticles synthesized from colloidal techniques have the capability in many applications such as catalysis and sensing. Au nanoparticles function as both catalyst and highly sensitive SERS probe can be employed for sustainable and green catalytic process. However, capping ligands that are necessary to stabilize nanoparticles during synthesis are negative for catalytic activity. In this work, a simple effective mild thermal treatment to remove capping ligands meanwhile preserving the high SERS sensitivity of Au nanoparticles is reported. We show that under the optimal treatment conditions (250 °C for 2 h), 50 nm Au nanoparticles surfaces are free from any capping molecules. The catalytic activity of treated Au nanoparticles is studied through H2O2 decomposition, which proves that the treatment is favorable for catalytic performance improvement. A reaction intermediate during H2O2 decomposition is observed and identified.
Project description:Photocatalytic generation of H2O2 from water and O2 is a promising strategy for liquid solar-fuel production. Previously reported powder photocatalysts promote a subsequent oxidative/reductive decomposition of the H2O2 generated, thereby producing low-H2O2-content solutions. This study reports that Nafion (Nf)-integrated resorcinol-formaldehyde (RF) semiconducting resin powders (RF@Nf), synthesized by polycondensation of resorcinol and formaldehyde with an Nf dispersion solution under high-temperature hydrothermal conditions, exhibit high photocatalytic activities and produce high-H2O2-content solutions. Nf acts as a surface stabilizer and suppresses the growth of RF resins. This generates small Nf-woven resin particles with large surface areas and efficiently catalyze water oxidation and O2 reduction. The Nf-woven resin surface, due to its hydrophobic nature, hinders the access of H2O2 and suppresses its subsequent decomposition. The simulated-sunlight irradiation of the resins in water under atmospheric pressure of O2 stably generates H2O2, producing high-H2O2-content solutions with more than 0.06 wt % H2O2 (16 mM).
Project description:The protein matrix of natural metalloenzymes regulates the reactivity of metal complexes to establish unique catalysts. We describe the incorporation of a cobalt complex of corrole (CoCor), a trianionic porphyrinoid metal ligand, into an apo-form of myoglobin to provide a reconstituted protein (rMb(CoCor)). This protein was characterized by UV-vis, EPR, and mass spectroscopic measurements. The reaction of rMb(CoCor) with hydrogen peroxide promotes an irreversible oxidation of the CoCor cofactor, whereas the same reaction in the presence of a phenol derivative yields the cation radical form of CoCor. Detailed kinetic investigations indicate the formation of a transient hydroperoxo complex of rMb(CoCor) which promotes the oxidation of the phenol derivatives. This mechanism is significantly different for native heme-dependent peroxidases, which generate a metal-oxo species as an active intermediate in a reaction with hydrogen peroxide. The present findings of unique reactivity will contribute to further design of artificial metalloenzymes.
Project description:Hydrogen borrowing catalysis serves as a powerful alternative to enolate alkylation, enabling the direct coupling of ketones with unactivated alcohols. However, to date, methods that enable control over the absolute stereochemical outcome of such a process have remained elusive. Here we report a catalytic asymmetric method for the synthesis of enantioenriched cyclohexanes from 1,5-diols via hydrogen borrowing catalysis. This reaction is mediated by the addition of a chiral iridium(I) complex, which is able to impart high levels of enantioselectivity upon the process. A series of enantioenriched cyclohexanes have been prepared and the mode of enantioinduction has been probed by a combination of experimental and DFT studies.
Project description:A simple, efficient, and environmentally friendly asymmetric epoxidation of primary, secondary, tertiary allylic, and homoallylic alcohols has been accomplished. This process was promoted by a tungsten-bishydroxamic acid complex at room temperature with the use of aqueous 30% H2O2 as oxidant, yielding the products in 84-98% ee.
Project description:One-compartment H2O2-photofuel cells using monoclinic scheelite BiVO4 film deposited on fluorine-doped tin oxide (ms-BiVO4/FTO) as the photoanode, Prussian blue film-coated FTO cathode, and deaerated aqueous electrolyte solution of 0.1 M NaClO4 and 0.1 M H2O2 were constructed. Mesoporous TiO2 photoanode cells with the same cathode and electrolyte solution were also prepared for comparison. The ms-BiVO4/FTO photoanode was prepared by a two-step route consisting of spin coating of a precursor solution on FTO and subsequent heating at 500 °C in the air. The thickness of the ms-BiVO4 film was controlled in the range from 50 to 500 nm by the number of the spin-coating times. There is an optimum thickness of the ms-BiVO4 film in the cell performances under illumination of simulated sunlight (AM 1.5, 100 mW cm-2, 1 sun). Under the optimum conditions, the ms-BiVO4/FTO photoanode cell provides a short-circuit current (J sc) = 0.81 mA cm-2 and an open-circuit voltage (V oc) = 0.61 V, far surpassing the values of J sc = 0.01 mA cm-2 and V oc = 0.31 V for the conventional mesoporous TiO2 photoanode cell. The striking cell performance is ascribable to the high visible-light activity of ms-BiVO4 for H2O2 oxidation and its low thermocatalytic activity for the decomposition.
Project description:Photocatalytic generation of H2O2 from water and O2 under sunlight is a promising artificial photosynthesis reaction to generate renewable fuel. We previously found that resorcinol-formaldehyde resin powders prepared with a high-temperature hydrothermal method become semiconductors comprising π-conjugated/π-stacked benzenoid-quinoid donor-acceptor resorcinol units and are active for photocatalytic H2O2 generation. Here, we have prepared phenol-resorcinol-formaldehyde resins with small amounts of phenol (∼5 mol % relative to resorcinol), which show enhanced photocatalytic activity. Incorporating phenol bearing a single -OH group in the resin matrices relaxes the restriction on the arrangement of the aromatic rings originating from the H-bonding interactions between the resorcinol -OH groups. This creates stronger donor-acceptor π-stacking and increases the electron conductivity of the resins. We have demonstrated that simulated sunlight illumination of the resins in water under an atmospheric pressure of O2 stably generated H2O2 with more than 0.9% solar-to-chemical conversion efficiency.
Project description:We present a new class of ultrasound molecular imaging agents that extend upon the design of micromotors that are designed to move through fluids by catalyzing hydrogen peroxide (H₂O₂) and propelling forward by escaping oxygen microbubbles. Micromotor converters require 62 mm of H₂O₂ to move - 1000-fold higher than is expected in vivo. Here, we aim to prove that ultrasound can detect the expelled microbubbles, to determine the minimum H₂O₂ concentration needed for microbubble detection, explore alternate designs to detect the H₂O₂ produced by activated neutrophils and perform preliminary in vivo testing. Oxygen microbubbles were detected by ultrasound at 2.5 mm H₂O₂. Best results were achieved with a 400-500 nm spherical design with alternating surface coatings of catalase and PSS over a silica core. The lowest detection limit of 10-100 μm was achieved when assays were done in plasma. Using this design, we detected the H₂O₂ produced by freshly isolated PMA-activated neutrophils allowing their distinction from naïve neutrophils. Finally, we were also able to show that direct injection of these nanospheres into an abscess in vivo enhanced ultrasound signal only when they contained catalase, and only when injected into an abscess, likely because of the elevated levels of H₂O₂ produced by inflammatory mediators.