Project description:The intestinal microbiota and its derived short-chain fatty acids (SCFAs) can reverse obesity and obesity-related metabolic diseases, but whether it has an effect on obesity complicated by precocious puberty and its potential mechanism need to be further understood. The purpose of this study was to investigate the effect of the gut microbiota and its derived short-chain fatty acids (SCFAs) on obesity-induced precocious puberty rats and their regulatory mechanisms. We constructed obesity-induced precocious puberty rats using a high-fat diet (HFD) had notable similarity to precocious puberty caused by obesity due to overeating in children. We then added acetate, propionate, butyrate or their mixture to the HFD, and investigated the effect of intestinal microbiota and its derived SCFAs on the hypothalamic-pituitary-gonadal axis (HPGA) in rats with obesity-induced precocious puberty. We found that obesity-induced precocious puberty rats had an early first estrous cycle, increased hypothalamic mRNA expression of Kiss1, GPR54 and GnRH, and early gonadal maturation. Meanwhile, the intestinal microbiota imbalance and the main SCFAs production decreased in the colon. The addition of acetate, propionate, butyrate or their mixture to the HFD could significantly reverse the precocious puberty of rats, reduce GnRH release from the hypothalamus and delay the development of the gonadal axis through the Kiss1-GPR54-PKC-ERK1/2 pathway. Our findings suggest that gut microbiota-derived SCFAs are promising therapeutic means for the prevention of obesity-induced precocious puberty and provide new therapeutic strategies with clinical value.
Project description:Xiao Cheng Qi (XCQ) decoction, an ancient Chinese herbal mixture, has been used in treating slow-transit constipation (STC) for years. The underlying action mechanism in relieving the clinical symptoms is unclear. Several lines of evidence point to a strong link between constipation and gut microbiota. Short-chain fatty acids (SCFAs) and microbial metabolites have been shown to affect 5-HT synthesis by activating the GPR43 receptor localized on intestinal enterochromaffin cells, since 5-HT receptors are known to influence colonic peristalsis. The objective of this study was to evaluate the efficacy of XCQ in alleviating clinical symptoms in a mouse model of STC induced by loperamide. The application of loperamide leads to a decrease in intestinal transport and fecal water, which is used to establish the animal model of STC. In addition, the relationship between constipation and gut microbiota was determined. The herbal materials, composed of Rhei Radix et Rhizoma (Rhizomes of Rheum palmatum L., Polygonaceae) 55.2 g, Magnoliae Officinalis Cortex (Barks of Magnolia officinalis Rehd. et Wils, Magnoliaceae) 27.6 g, and Aurantii Fructus Immaturus (Fruitlet of Citrus aurantium L., Rutaceae) 36.0 g, were extracted with water to prepare the XCQ decoction. The constipated mice were induced with loperamide (10 mg/kg/day), and then treated with an oral dose of XCQ herbal extract (2.0, 4.0, and 8.0 g/kg/day) two times a day. Mosapride was administered as a positive drug. In loperamide-induced STC mice, the therapeutic parameters of XCQ-treated mice were determined, i.e., (i) symptoms of constipation, composition of gut microbiota, and amount of short-chain fatty acids in feces; (ii) plasma level of 5-HT; and (iii) expressions of the GPR43 and 5-HT4 receptor in colon. XCQ ameliorated the constipation symptoms of loperamide-induced STC mice. In gut microbiota, the treatment of XCQ in STC mice increased the relative abundances of Lactobacillus, Prevotellaceae_UCG_001, Prevotellaceae_NK3B31_group, Muribaculaceae, and Roseburia in feces and decreased the relative abundances of Desulfovibrio, Tuzzerella, and Lachnospiraceae_ NK4A136_group. The levels of SCFAs in stools from the STC group were significantly lower than those the control group, and were greatly elevated via treatment with XCQ. Compared with the STC group, XCQ increased the plasma level of 5-HT and the colonic expressions of the GPR43 and 5-HT4 receptor, significantly. The underlying mechanism of XCQ in anti-constipation could be related to the modulation of gut microbiota, the increase in SCFAs, the increase in plasma 5-HT, and the colonic expressions of the GPR43 and 5-HT4 receptor. Our results indicate that XCQ is a potent natural product that could be a therapeutic strategy for constipation.
Project description:Obesity is a chronic metabolic disease caused by genetic and environmental factors that has become a serious global health problem. There is evidence that gut microbiota is closely related to the occurrence and development of obesity. Erchen Decoction (ECD), a traditional Chinese medicine, has been widely used for clinical treatment and basic research of obesity and related metabolic diseases in recent years. It can significantly improve insulin resistance (IR) and lipid metabolism disorders. However, there is no microbiological study on its metabolic regulation. In this study, we investigated the effects of ECD on obesity, especially lipid metabolism and the composition and function of gut microbiota in Zucker diabetic fatty (ZDF) rats, and explored the correlation between the biomarkers of gut microbiota and metabolite and host phenotype. The results showed that ECD could reduce body weight, improve IR and lipid metabolism, and reduce the concentration of free fatty acids (FFA) released from white adipose tissue (WAT) due to excessive lipolysis by interfering with the insulin receptor substrate 1 (IRS1)/protein kinase B (AKT)/protein kinase A (PKA)/hormone-sensitive triglyceride lipase (HSL) signaling pathway in ZDF rats. Additionally, ECD gradually adjusted the overall structure of changed gut microbiota, reversed the relative abundance of six genera, and changed the function of gut microbiota by reducing the content of propionic acid, a metabolite of gut microbiota, in ZDF rats. A potentially close relationship between biomarkers, especially Prevotella, Blautia, and Holdemania, propionic acid and host phenotypes were demonstrated through correlation analysis. The results suggested that the beneficial effects of ECD on obesity, especially lipid metabolism disorders, are related to the regulation of gut microbiota in ZDF rats. This provides a basis for further research on the mechanism and clinical application of ECD to improve obesity via gut microbiota.
Project description:Finishing weight is a key economic trait in the domestic pig industry. Evidence has linked the gut microbiota and SCFAs to health and production performance in pigs. Nevertheless, for Diannan small ear (DSE) pigs, a specific pig breed in China, the potential effect of gut microbiota and SCFAs on their finishing weight remains unclear. Herein, based on the data of the 16S ribosomal RNA gene and metagenomic sequencing analysis, we found that 13 OTUs could be potential biomarkers and 19 microbial species were associated with finishing weight. Among these, carbohydrate-decomposing bacteria of the families Streptococcaceae, Lactobacillaceae, and Prevotellaceae were positively related to finishing weight, whereas the microbial taxa associated with intestinal inflammation and damage exhibited opposite effects. In addition, interactions of these microbial species were found to be linked with finishing weight for the first time. Gut microbial functional annotation analysis indicated that CAZymes, such as glucosidase and glucanase could significantly affect finishing weight, given their roles in increasing nutrient absorption efficiency. Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologies (KOs) and KEGG pathways analysis indicated that glycolysis/gluconeogenesis, phosphotransferase system (PTS), secondary bile acid biosynthesis, ABC transporters, sulfur metabolism, and one carbon pool by folate could act as key factors in regulating finishing weight. Additionally, SCFA levels, especially acetate and butyrate, had pivotal impacts on finishing weight. Finishing weight-associated species Prevotella sp. RS2, Ruminococcus sp. AF31-14BH and Lactobacillus pontis showed positive associations with butyrate concentration, and Paraprevotella xylaniphila and Bacteroides sp. OF04-15BH were positively related to acetate level. Taken together, our study provides essential knowledge for manipulating gut microbiomes to improve finishing weight. The underlying mechanisms of how gut microbiome and SCFAs modulate pigs' finishing weight required further elucidation.
Project description:BackgroundColonoscopy is a classic diagnostic method with possible complications including abdominal pain and diarrhoea. In this study, gut microbiota dynamics and related metabolic products during and after colonoscopy were explored to accelerate gut microbiome balance through probiotics.MethodsThe gut microbiota and fecal short-chain fatty acids (SCFAs) were analyzed in four healthy subjects before and after colonoscopy, along with seven individuals supplemented with Clostridium butyricum. We employed 16S rRNA sequencing and GC-MS to investigate these changes. We also conducted bioinformatic analysis to explore the buk gene, encoding butyrate kinase, across C. butyricum strains from the human gut.ResultsThe gut microbiota and fecal short-chain fatty acids (SCFAs) of four healthy subjects were recovered on the 7th day after colonoscopy. We found that Clostridium and other bacteria might have efficient butyric acid production through bioinformatic analysis of the buk and assessment of the transcriptional level of the buk. Supplementation of seven healthy subjects with Clostridium butyricum after colonoscopy resulted in a quicker recovery and stabilization of gut microbiota and fecal SCFAs on the third day.ConclusionWe suggest that supplementation of Clostridium butyricum after colonoscopy should be considered in future routine clinical practice.
Project description:Dietary fiber (DF) is increasingly thought to regulate diversity of piglet gut microbiota to alleviate weaning stress in piglets. This study was conducted to investigate the effects of DF on growth performance of piglets and composition of their gut microbiota, as well as the interaction between gut microbiota and short-chain fatty acids (SCFAs) in piglets. A total of 840 piglets were allocated to three dietary treatments consisting of a control group (CG), an alfalfa meal group (AG), and a commodity concentrated fiber group (OG) in a 30-day feeding trial. Gut mucosa and feces samples were used to determine bacterial community diversity by 16S rRNA gene amplicon sequencing. Fiber treatment had a positive effect on growth performance and metabolism of SCFAs in piglets, in particular, compared with CG, the diarrhea rate was significantly decreased, and the content of propionic acid (PA) in the cecum was markedly increased in AG. The Shannon indices of the jejunum microbiota in AG were higher than CG. At the genus level, compared to CG, in the duodenum, the relative abundance of Paenibacillus in AG and OG was higher; in the jejunum, the relative abundances of Bacillus, Oceanobacillus, Paenibacillus, Lactococcus, Enterococcus, and Exiguobacterium were higher, whereas the relative abundance of Mycoplasma was lower in AG; in the cecum, there was also lower relative abundance of Helicobacter in AG and OG, and furthermore, the relative abundance of Faecalibacterium in OG was higher than in CG and AG. Spearman correlation analysis showed that Pseudobutyrivibrio was positively correlated with acetic acid, PA, and butyric acid (BA), while Bacteroides and Anaerotruncus were negatively correlated with PA and BA. In addition, microbiota analyses among different intestine segments showed distinct differences in microbiota between the proximal and distal intestines. Bacteria in the proximal segments were mainly Firmicutes, while bacteria in the distal segments were mainly Bacteroidetes and Firmicutes. Overall, these findings suggested that DF treatment could reduce the diarrhea rate of piglets and had beneficial effects on gut health, which might be attributed to the alteration in gut microbiota induced by DF and the interaction of the gut microbiota with SCFAs.
Project description:ObjectivesTo identify the sensitive biomarker to predict the effectiveness of Xue-Fu-Zhu-Yu capsules (XFZYC).MethodsThis nested case-control study included 5 patients with response to XFZYC in the treatment group, 5 patients with no response to XFZYC also in the treatment group, and 5 patients in the control group treated with placebo who participated in the previous RCT. The mRNAs, miRNAs, lncRNAs, and circRNAs were sequenced by next-generation sequencing and differential-expressed (DE) RNAs were identified if p value ≤ 0.05 and fold change ≥2, bioinformatics analysis was conducted in terms of function annotations and signaling pathways, and then sensitive biomarker was analyzed based on real-time PCR.ResultsThe distributions of clinical characteristics between the selected participants from treatment group and placebo group were well balanced. A total of 1156 DE RNAs, 388 miRNAs, 1954 lncRNAs, and 560 circRNAs were identified, which was associated the mechanism of XFZYC and composed the targeted potential biomarkers for further real-time PCR. The DE RNAs were enriched in KEGG pathways pertaining to pathogenesis of Qi Stagnation and Blood Stasis- (QS & BS-) & associated diseases such as coronary heart disease and digestive diseases. The expression level of FZD8 was significantly higher in response patients than that in nonresponse patients (p = 0.041) and circRNA_13799 significantly lower in response patients than that in nonresponse patients (p = 0.040) based on real-time PCR. Patients with higher expression level of FZD8 with 75% stratification have significantly higher reduction in the questionnaire score (p = 0.010), and the area under the curve (AUC) was 0.765 (95%CI = 0.593-0.936; p = 0.014).ConclusionsFZD8 might perform the sensitive biomarker for predicting the effectiveness of XFZYC. However, further prospective cohort study was warranted to confirm the exact specificity and sensitivity of this biomarker.
Project description:IntroductionNon-alcoholic fatty liver disease (NAFLD) is a multifactorial disease. As a clinical empirical prescription of traditional Chinese medicine, Qushi Huayu decoction (QHD) has attracted considerable attention for its advantages in multi-target treatment of NAFLD. However, the intervention mechanism of QHD on abnormal lipid levels and gut microbiota in NAFLD has not been reported.MethodsTherefore, we verified the therapeutic effect of QHD on high-fat diet (HFD)-induced NAFLD in rats by physiological parameters and histopathological examination. In addition, studies on gut microbiota and serum lipidomics based on 16S rRNA sequencing and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) were conducted to elucidate the therapeutic mechanism of NAFLD in QHD.ResultsThe changes in gut microbiota in NAFLD rats are mainly reflected in their diversity and composition, while QHD treated rats restored these changes. The genera Blautia, Lactobacillus, Allobaculum, Lachnoclostridium and Bacteroides were predominant in the NAFLD group, whereas, Turicibacter, Blautia, Sporosarcina, Romboutsia, Clostridium_sensu_stricto_1, Allobaculum, and Psychrobacter were predominant in the NAFLD+QHD group. Lipid subclasses, including diacylglycerol (DG), triglycerides (TG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidic acid (PA), phosphatidylserine (PS), lysophosphatidylinositol (LPI), and phosphatidylglycerol (PG), were significantly different between the NAFLD and the control groups, while QHD treatment significantly altered the levels of DG, TG, PA, lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), and platelet activating factor (PAF). Finally, Spearman's correlation analysis showed that NAFLD related differential lipid molecules were mainly associated with the genera of Bacteroides, Blautia, Lachnoclostridium, Clostridium_sensu_stricto_1, and Turicibacter, which were also significantly correlated with the biological parameters of NAFLD.DiscussionTaken together, QHD may exert beneficial effects by regulating the gut microbiota and thus intervening in serum lipids.
Project description:Gegen Qinlian Decoction (GGQLT) is a traditional Chinese herbal medicine that has been reported to have a significant therapeutic effect in the management of type II diabetes mellitus (T2DM). In this study, we constructed a T2DM rat model by feeding a high-fat diet and injecting streptozotocin (STZ) and tested the effects of feeding GGQLT and fecal transplantation on the physiological indices, microbiota, and metabolism of rats. The results showed that the administration of GGQLT can significantly improve the growth performance of rats and has a remarkable antihyperlipidemic effect. In addition, GGQLT altered the composition of gut microbiota by increasing beneficial bacteria such as Coprococcus, Bifidobacterium, Blautia, and Akkermansia. In addition, GGQLT elevated levels of specific bile acids by metabolomic analysis, potentially contributing to improvements in lipid metabolism. These findings suggest that GGQLT may have beneficial effects on T2DM by influencing lipid metabolism and gut microbiota. However, further studies are needed to elucidate its mechanisms and assess clinical applications.
Project description:Mahuang Fuzi Xixin Decoction (MFXD), a Chinese traditional herbal formulation, has been used to treat allergic rhinitis (AR) in China for centuries. However, the mechanism underlying its effect on AR is unclear. This study investigated the mechanism underlying the therapeutic effects of MFXD on AR. Ovalbumin-induced AR rat models were established, which were then treated with MFXD for 14 days. Symptom scores of AR were calculated. The structure of the gut microbiota was analyzed by 16S rRNA gene sequencing and qPCR. Short-chain fatty acid (SCFA) content in rat stool and serum was determined by GC-MS. Inflammatory and immunological responses were assessed by histopathology, ELISA, flow cytometry, and western blotting. Our study demonstrated that MFXD reduced the symptom scores of AR and serum IgE and histamine levels. MFXD treatment restored the diversity of the gut microbiota: it increased the abundance of Firmicutes and Bacteroidetes and decreased the abundance of Proteobacteria and Cyanobacteria. MFXD treatment also increased SCFA content, including that of acetate, propionate, and butyrate. Additionally, MFXD administration downregulated the number of Th17 cells and the levels of the Th17-related cytokines IL-17 and RORγt. By contrast, there was an increase in the number of Treg cells and the levels of the Treg-related cytokines IL-10 and Foxp3. MFXD and butyrate increased the levels of ZO-1 in the colon. This study indicated MFXD exerts therapeutic effects against AR, possibly by regulating the gut microbial composition and Th17/Treg balance.