Project description:Vascular dysfunction in cardiovascular diseases includes vasomotor response impairments, endothelial cells (ECs) activation, and smooth muscle cells (SMCs) proliferation and migration to the intima. This results in intimal hyperplasia and vessel failure. We previously reported that activation of the P2Y11 receptor (P2Y11R) in human dendritic cells, cardiofibroblasts and cardiomyocytes was protective against hypoxia/reoxygenation (HR) lesions. In this study, we investigated the role of P2Y11R signaling in vascular dysfunction. P2Y11R activity was modulated using its pharmacological agonist NF546 and antagonist NF340. Rat aortic rings were exposed to angiotensin II (AngII) and evaluated for their vasomotor response. The P2Y11R agonist NF546 reduced AngII-induced vascular dysfunction by promoting EC-dependent vasorelaxation, through an increased nitric oxide (NO) bioavailability and reduced AngII-induced H2O2 release; these effects were prevented by the use of the P2Y11R antagonist NF340. Human vascular SMCs and ECs were subjected to AngII or H/R simulation in vitro. P2Y11R agonist modulated vasoactive factors in human ECs, that is, endothelial nitric oxide synthase (eNOS) and endothelin-1, reduced SMC proliferation and prevented the switch towards a synthetic phenotype. H/R and AngII increased ECs secretome-induced SMC proliferation, an effect prevented by P2Y11R activation. Thus, our data suggest that P2Y11R activation may protect blood vessels from HR-/AngII-induced injury and reduce vascular dysfunctions. These results open the way for new vasculoprotective interventions.
Project description:The inflammatory pathways that drive the development of intimal hyperplasia (IH) following arterial injury are not fully understood. We hypothesized that the lysosomal cysteine protease cathepsin L activates processes leading to IH after arterial injury. Using a mouse model of wire-induced carotid artery injury we showed that cathepsin L activity peaks at day 7 and remains elevated to 28 days. The genetic deletion of cathepsin L prevented IH and monocyte recruitment in the carotid wall. The injury-induced increases in cathepsin L mRNA and activity were mitigated in mice with myeloid-specific deletion of toll like receptor 4 (TLR4) or myeloid differentiation primary response gene 88 (MyD88). We further discovered that a HIV-protease inhibitor saquinavir (SQV), which is known to block recombinant mouse cathepsin L activity in vitro, prevented IH after arterial injury. SQV also suppressed LPS (TLR4 agonist) induced monocyte adhesion to endothelial monolayers. These findings establish cathepsin L as a critical regulator of the inflammation that leads to IH and that the TLR4- MyD88 pathway in myeloid lineages regulates cathepsin L expression in the vessel wall following wire injury. The FDA approved drug, SQV blocks IH though mechanisms that may include the suppression of cathepsin L.
Project description:Protein kinase CK1alpha regulates several fundamental cellular processes including proliferation and differentiation. Up to four forms of this kinase are expressed in vertebrates resulting from alternative splicing of exons; these exons encode either the L-insert located within the catalytic domain or the S-insert located at the C terminus of the protein. Whereas the L-insert is known to target the kinase to the nucleus, the functional significance of nuclear CK1alphaLS has been unclear. Here we demonstrate that selective L-insert-targeted short hairpin small interfering RNA-mediated knockdown of CK1alphaLS in human vascular endothelial cells and vascular smooth muscle cells impairs proliferation and abolishes hydrogen peroxide-stimulated proliferation of vascular smooth muscle cells, with the cells accumulating in G(0)/G(1). In addition, selective knockdown of CK1alphaLS in cultured human arteries inhibits vascular activation, preventing smooth muscle cell proliferation, intimal hyperplasia, and proteoglycan deposition. Knockdown of CK1alphaLS results in the harmonious down-regulation of its target substrate heterogeneous nuclear ribonucleoprotein C and results in the altered expression or alternative splicing of key genes involved in cellular activation including CXCR4, MMP3, CSF2, and SMURF1. Our results indicate that the nuclear form of CK1alpha in humans, CK1alphaLS, plays a critical role in vascular cell proliferation, cellular activation, and hydrogen peroxide-mediated mitogenic signal transduction.
Project description:ObjectiveThis study aimed to explore whether treatment with the glucagon-like peptide-1 (GLP-1) analog liraglutide reduces intimal hyperplasia after coronary stent implantation via regulation of glycemic variability, the NLRP3 inflammasome, and IL-10 in diabetic swine.MethodsFifteen pigs were divided into a diabetes mellitus (DM) group (n = 6), a DM + liraglutide treatment group (L group) (n = 6) and a sham group (n = 3). A total of 24 everolimus-eluting stents were implanted in the left anterior descending and right coronary arteries at 3 weeks. A novel continuous glucose monitoring system (GMS) was used for 2 weeks. The means and standard deviations (SDs) were measured and calculated by the GMS. At 22 weeks, the lumen area (LA), neointimal thickness (NIT), neointimal area (NIA), and percent area stenosis (%AS) were analyzed by optical coherence tomography. Plasma tumor necrosis factor-α, interleukin-6, and interleukin-10 were assayed by ELISA. The intima protein expression levels of NLRP3, interleukin-1β, interleukin-18 and interleukin-10 were examined using Western blot analysis. Histology was used to evaluate the healing response. In an in vitro study, THP-1 cells were divided into control, high glucose (HG), HG + liraglutide, and HG + liraglutide + Exe(9-39) (a GLP-1 receptor inhibitor) groups.ResultsThe L group had a lower SD, NIT, NIA, and %AS; a larger LA; reduced inflammation and injury scores; lower expression levels of tumor necrosis factor-α, interleukin-6, NLRP3, interleukin-1β, and interleukin-18; and higher expression of interleukin-10 compared with those of the DM group (p < 0.05). In the in vitro study, similar results were obtained in the HG + liraglutide group, and Exe(9-39) abolished the effect of liraglutide (p < 0.05).ConclusionsLiraglutide treatment reduces intimal hyperplasia after stent implantation via regulation of glycemic variability, the NLRP3 inflammasome, and IL-10 in diabetic pigs in a GLP-1 receptor-dependent manner. Reducing the inflammation induced by glycemic variability may be one of the cardioprotective mechanisms of liraglutide.
Project description:ObjectiveAngiotensin II (Ang II) infusion causes aortic medial thickening via stimulation of angiotensin II type 1a (AT1a) receptors. The purpose of this study was to determine the cellular loci of AT1a receptors that mediate this Ang II-induced aortic pathology.Approach and resultsSaline or Ang II was infused into AT1a receptor floxed mice expressing Cre under control of cell-specific promoters. Initially, AT1a receptors were depleted in aortic smooth muscle cell and endothelium by expressing Cre under control of SM22 and Tie2 promoters, respectively. Deletion of AT1a receptors in either cell type had no effect on Ang II-induced medial thickening. To determine whether this effect was related to neural stimulation, AT1a receptors were depleted using an enolase 2-driven Cre. Depletion of AT1a receptors in neural cells attenuated Ang II-induced medial thickening of the ascending, but not descending aorta. Lineage tracking studies, using ROSA26-LacZ, demonstrated that enolase 2 was also expressed in adventitial cells adjacent to the region of attenuated thickening. To determine whether adventitial fibroblasts contributed to this attenuation, AT1a receptors in fibroblasts were depleted using S100A4 driven Cre. Similar to enolase 2-Cre, Ang II-induced medial thickening was attenuated in the ascending, but not the descending aorta. Lineage tracking demonstrated an increase of S100A4-LacZ positive cells in the media of the ascending region during Ang II infusion.ConclusionsAT1a receptor depletion in fibroblasts attenuates Ang II-induced medial hyperplasia in the ascending aorta.
Project description:Vascular access is the lifeline for hemodialysis patients and the single most important component of the hemodialysis procedure. Arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis patients, but nearly 60% of AVFs created fail to successfully mature due to early intimal hyperplasia development and poor outward remodeling. There are currently no therapies available to prevent AVF maturation failure. First, we showed the important regulatory role of nitric oxide (NO) on AVF development by demonstrating that intimal hyperplasia development was reduced in an overexpressed endothelial nitric oxide synthase (NOS3) mouse AVF model. This supported the rationale for the potential application of NO to the AVF. Thus, we developed a self-assembled NO releasing nanomatrix gel and applied it perivascularly at the arteriovenous anastomosis immediately following rat AVF creation to investigate its therapeutic effect on AVF development. We demonstrated that the NO releasing nanomatrix gel inhibited intimal hyperplasia formation (more than 70% reduction), as well as improved vascular outward remodeling (increased vein diameter) and hemodynamic adaptation (lower wall shear stress approaching the preoperative level and less vorticity). Therefore, direct application of the NO releasing nanomatrix gel to the AVF anastomosis immediately following AVF creation may enhance AVF development, thereby providing long-term and durable vascular access for hemodialysis.
Project description:Venous bypass grafts often fail following arterial implantation due to excessive smooth muscle cells (VSMC) proliferation and consequent intimal hyperplasia (IH). Intercellular communication mediated by Connexins (Cx) regulates differentiation, growth and proliferation in various cell types. Microarray analysis of vein grafts in a model of bilateral rabbit jugular vein graft revealed Cx43 as an early upregulated gene. Additional experiments conducted using an ex-vivo human saphenous veins perfusion system (EVPS) confirmed that Cx43 was rapidly increased in human veins subjected ex-vivo to arterial hemodynamics. Cx43 knock-down by RNA interference, or adenoviral-mediated overexpression, respectively inhibited or stimulated the proliferation of primary human VSMC in vitro. Furthermore, Cx blockade with carbenoxolone or the specific Cx43 inhibitory peptide 43gap26 prevented the burst in myointimal proliferation and IH formation in human saphenous veins. Our data demonstrated that Cx43 controls proliferation and the formation of IH after arterial engraftment.
Project description:Safety and efficacy of coronary drug-eluting stents (DES) are often preclinically tested using healthy or minimally diseased swine. These generally show significant fibrotic neointima at follow-up, while in patients, incomplete healing is often observed. The aim of this study was to investigate neointima responses to DES in swine with significant coronary atherosclerosis. Adult familial hypercholesterolemic swine (n = 6) received a high fat diet to develop atherosclerosis. Serial OCT was performed before, directly after, and 28 days after DES implantation (n = 14 stents). Lumen, stent and plaque area, uncovered struts, neointima thickness and neointima type were analyzed for each frame and averaged per stent. Histology was performed to show differences in coronary atherosclerosis. A range of plaque size and severity was found, from healthy segments to lipid-rich plaques. Accordingly, neointima responses ranged from uncovered struts, to minimal neointima, to fibrotic neointima. Lower plaque burden resulted in a fibrotic neointima at follow-up, reminiscent of minimally diseased swine coronary models. In contrast, higher plaque burden resulted in minimal neointima and more uncovered struts at follow-up, similarly to patients' responses. The presence of lipid-rich plaques resulted in more uncovered struts, which underscores the importance of advanced disease when performing safety and efficacy testing of DES.
Project description:Despite rapid progress in surgical techniques, there is still a significant lack of surgery-supportive pharmacological treatments. The aim of this study was to test the hypothesis that ursolic acid (UA) may prevent intimal hyperplasia of venous bypass grafts.The hypothesis was tested by means of primary cell isolation and culture followed by real-time polymerase chain reaction, western blotting, fluorescence microscopy and fluorescence-activated cell sorting analyses, as well as an in vivo rat model for intimal hyperplasia of venous bypass grafts and immunohistochemistry and histochemistry.The local application of UA significantly inhibited intimal hyperplasia in vivo (intimal thickness control: 25 µm, UA group: 18 µM-8 weeks after surgery). The UA treatment of grafts significantly resulted in reduced endothelial vascular cell adhesion molecule-1 (VCAM-1) expression, reduced infiltration of the grafts vessel wall by CD45-positive cells and increased smooth muscle cell (SMC) death. In in vitro condition, it could be shown that UA inhibits VCAM-1 expression downstream of NF?B and is likely to interfere with VCAM-1 protein synthesis in endothelial cells. Quantification of cell death in vascular smooth muscle cells treated with UA indicated that UA is a potent inducer of SMC apoptosis.Our results suggest that UA-mediated inhibition of endothelial VCAM-1 expression reduces the infiltration of venous bypass grafts by CD45-positive cells and inhibits intimal hyperplasia. Apoptosis induction in SMCs may be another method in which UA reduces intimal thickening. UA may constitute a surgery-supportive pharmacon that reduces intimal hyperplasia of vein grafts.