Project description:Deletion mutants of the two sortase genes of Enterococcus faecalis OG1RF were constructed. srtC (renamed here bps for biofilm and pilus-associated sortase) was previously shown to be necessary for the production of Ebp pili and important for biofilm formation and endocarditis. Here, we report that a srtA deletion mutant showed a small (5%) yet significant (P = 0.037) reduction in biofilm relative to OG1RF, while a DeltasrtA Deltabps double mutant showed a much greater reduction (74% versus OG1RF and 44% versus the Deltabps mutant). In a murine urinary tract infection (UTI), the 50% infective doses of both the DeltasrtA Deltabps and Deltabps mutants were approximately 2 log10 greater than that of OG1RF or the DeltasrtA mutant. Similarly, approximately 2 log10 fewer bacteria were recovered from the kidneys after infection with the Deltabps mutant (P = 0.017) and the DeltasrtA Deltabps double mutant (P = 0.022) compared to wild-type strain OG1RF. In a competition UTI, the Deltabps mutant was slightly, but not significantly, less attenuated than the DeltasrtA Deltabps double mutant. Fluorescence-activated cell sorter analysis with Ebp-specific antibodies confirmed that a minority of OG1RF cells express Ebp pili on their surface in vitro and that Bps has a major role in Ebp pilus biogenesis but also indicated a function for SrtA in surface localization of the pilus subunit protein EbpA. In conclusion, deletion of bps had a major effect on virulence in murine UTIs, as well as biofilm; deletion of srtA from OG1RF had little effect on these phenotypes, but its deletion from a bps mutant had a pronounced effect on biofilm, suggesting that Bps and/or the proteins it anchors may compensate for the loss of some SrtA function(s).
Project description:BackgroundEnterococcus faecalis is a dominant pathogen in the root canals of teeth with persistent apical periodontitis (PAP), and osteoblast apoptosis contributes to imbalanced bone remodelling in PAP. Here, we investigated the effect of E. faecalis OG1RF on apoptosis in primary human calvarial osteoblasts. Specifically, the expression of apoptosis-related genes and the role of anti-apoptotic and pro-apoptotic members of the BCL-2 family were examined.MethodsPrimary human calvarial osteoblasts were incubated with E. faecalis OG1RF at multiplicities of infection corresponding to infection time points. Flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, caspase-3/-8/-9 activity assay, polymerase chain reaction (PCR) array, and quantitative real-time PCR were used to assess osteoblast apoptosis.ResultsE. faecalis infection increased the number of early- and late-phase apoptotic cells and TUNEL-positive cells, decreased the mitochondrial membrane potential (ΔΨm), and activated the caspase-3/-8/-9 pathway. Moreover, of all 84 apoptosis-related genes in the PCR array, the expression of 16 genes was upregulated and that of four genes was downregulated in the infected osteoblasts. Notably, the mRNA expression of anti-apoptotic BCL2 was downregulated, whereas that of the pro-apoptotic BCL2L11, HRK, BIK, BMF, NOXA, and BECN1 and anti-apoptotic BCL2A1 was upregulated.ConclusionsE. faecalis OG1RF infection triggered apoptosis in human calvarial osteoblasts, and BCL-2 family members acted as regulators of osteoblast apoptosis. Therefore, BCL-2 family members may act as potential therapeutic targets for persistent apical periodontitis.
Project description:Liquid cultures of Enterococcus faecalis OG1RF and OG1RF Δbph were grown in tryptic soy broth without added dextrose (TSB-D) for 2 and 4 hr. At each time point, the transcriptomes were compared to identify differentially expressed genes in the Δbph mutant.
Project description:Transcriptional profiling to investigate the effect of drug treatment on the E. faecalis cells. For microarray analysis, E. faecalis OG1RF was grown in FMC medium supplemented with 10 mM glucose to an optical density at 600 nm (OD600) of 0.3 and the cultures were divided in 3 aliquots. One aliquot was collected by centrifugation and immediately frozen (untreated control cells). The other aliquots were treated for 30 or 60 min with 1.25 X the minimum inhibitory concentration (MIC) of vancomycin (10 μg ml-1). After an exposure time of 30 or 60 minutes, each of these cultures was also centrifuged and the pellets frozen. RNA was then isolated from each pellet for microarray analysis. This process was repeated 3 additional times, for a total of four replicates of each condition.
Project description:Our previous work identified a cosmid clone containing a 43-kb insert from Enterococcus faecalis OG1RF that produced a nonprotein antigen in Escherichia coli. In the present work, we studied this clone in detail. Periodate treatment of lysates of the clone confirmed that the antigen was carbohydrate in nature. Analysis of DNA sequences and transposon insertion mutants suggested that the insert contained a multicistronic gene cluster. Database comparison showed that the cluster contained genes similar to genes involved in the biosynthesis of dTDP-rhamnose, glycosyltransferases, and ABC transporters involved in the export of sugar polymers from both gram-positive and gram-negative organisms. Insertions in several genes within the cluster abolished the immunoreactivity of the clone. This is the first report on a gene cluster of E. faecalis involved in the biosynthesis of an antigenic polysaccharide.
Project description:Expression of ace (adhesin to collagen of Enterococcus faecalis), encoding a virulence factor in endocarditis and urinary tract infection models, has been shown to increase under certain conditions, such as in the presence of serum, bile salts, urine, and collagen and at 46 °C. However, the mechanism of ace/Ace regulation under different conditions is still unknown. In this study, we identified a two-component regulatory system GrvRS as the main regulator of ace expression under these stress conditions. Using Northern hybridization and β-galactosidase assays of an ace promoter-lacZ fusion, we found transcription of ace to be virtually absent in a grvR deletion mutant under the conditions that increase ace expression in wild-type OG1RF and in the complemented strain. Moreover, a grvR mutant revealed decreased collagen binding and biofilm formation as well as attenuation in a murine urinary tract infection model. Here we show that GrvR plays a major role in control of ace expression and E. faecalis virulence.
Project description:Enterococcus faecalis is a common commensal organism and a prolific nosocomial pathogen that causes biofilm-associated infections. Numerous E. faecalis OG1RF genes required for biofilm formation have been identified, but few studies have compared genetic determinants of biofilm formation and biofilm morphology across multiple conditions. Here, we cultured transposon (Tn) libraries in CDC biofilm reactors in two different media and used Tn sequencing (TnSeq) to identify core and accessory biofilm determinants, including many genes that are poorly characterized or annotated as hypothetical. Multiple secondary assays (96-well plates, submerged Aclar discs, and MultiRep biofilm reactors) were used to validate phenotypes of new biofilm determinants. We quantified biofilm cells and used fluorescence microscopy to visualize biofilms formed by six Tn mutants identified using TnSeq and found that disrupting these genes (OG1RF_10350, prsA, tig, OG1RF_10576, OG1RF_11288, and OG1RF_11456) leads to significant time- and medium-dependent changes in biofilm architecture. Structural predictions revealed potential roles in cell wall homeostasis for OG1RF_10350 and OG1RF_11288 and signaling for OG1RF_11456. Additionally, we identified growth medium-specific hallmarks of OG1RF biofilm morphology. This study demonstrates how E. faecalis biofilm architecture is modulated by growth medium and experimental conditions and identifies multiple new genetic determinants of biofilm formation. IMPORTANCE E. faecalis is an opportunistic pathogen and a leading cause of hospital-acquired infections, in part due to its ability to form biofilms. A complete understanding of the genes required for E. faecalis biofilm formation as well as specific features of biofilm morphology related to nutrient availability and growth conditions is crucial for understanding how E. faecalis biofilm-associated infections develop and resist treatment in patients. We employed a comprehensive approach to analysis of biofilm determinants by combining TnSeq primary screens with secondary phenotypic validation using diverse biofilm assays. This enabled identification of numerous core (important under many conditions) and accessory (important under specific conditions) biofilm determinants in E. faecalis OG1RF. We found multiple genes whose disruption results in drastic changes to OG1RF biofilm morphology. These results expand our understanding of the genetic requirements for biofilm formation in E. faecalis that affect the time course of biofilm development as well as the response to specific nutritional conditions.
Project description:Sortase-assembled pili contribute to virulence in many Gram-positive bacteria. In Enterococcus faecalis, the endocarditis and biofilm-associated pilus (Ebp) is polymerized on the membrane by sortase C (SrtC) and attached to the cell wall by sortase A (SrtA). In the absence of SrtA, polymerized pili remain anchored to the membrane (i.e. off-pathway). Here we show that the high temperature requirement A (HtrA) bifunctional chaperone/protease of E. faecalis is a quality control system that clears aberrant off-pathway pili from the cell membrane. In the absence of HtrA and SrtA, accumulation of membrane-bound pili leads to cell envelope stress and partially induces the regulon of the ceftriaxone resistance-associated CroRS two-component system, which in turn causes hyper-piliation and cell morphology alterations. Inactivation of croR in the OG1RF ΔsrtAΔhtrA background partially restores the observed defects of the ΔsrtAΔhtrA strain, supporting a role for CroRS in the response to membrane perturbations. Moreover, absence of SrtA and HtrA decreases basal resistance of E. faecalis against cephalosporins and daptomycin. The link between HtrA, pilus biogenesis and the CroRS two-component system provides new insights into the E. faecalis response to endogenous membrane perturbations.
Project description:The culture supernatant fraction of an Enterococcus faecalis gelE mutant of strain OG1RF contained elevated levels of the secreted antigen SalB. Using differential fluorescence gel electrophoresis (DIGE) the salB mutant was shown to possess a unique complement of exoproteins. Differentially abundant exoproteins were identified using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Stress-related proteins including DnaK, Dps family protein, SOD, and NADH peroxidase were present in greater quantity in the OG1RF salB mutant culture supernatant. Moreover, several proteins involved in cell wall synthesis and cell division, including d-Ala-d-Lac ligase and EzrA, were present in reduced quantity in OG1RF salB relative to the parent strain. The salB mutant displayed reduced viability and anomalous cell division, and these phenotypes were exacerbated in a gelE salB double mutant. An epistatic relationship between gelE and salB was not identified with respect to increased autolysis and cell morphological changes observed in the salB mutant. SalB was purified as a six-histidine-tagged protein to investigate peptidoglycan hydrolytic activity; however, activity was not evident. High-pressure liquid chromatography (HPLC) analysis of reduced muropeptides from peptidoglycan digested with mutanolysin revealed that the salB mutant and OG1RF were indistinguishable.
Project description:Enterococcus faecalis is a Gram-positive opportunistic pathogen that inhabits the human gastrointestinal tract. Because of the high frequency of antibiotic resistance among Enterococcus clinical isolates, interest in using phage to treat enterococcal infections and to decolonize high-risk patients for antibiotic-resistant Enterococcus is rising. Bacteria can evolve phage resistance, but there is little published information on these mechanisms in E. faecalis In this report, we identified genetic determinants of E. faecalis resistance to phage NPV1 (?NPV1). We found that loss-of-function mutations in epaR confer ?NPV1 resistance by blocking phage adsorption. We attribute the inability of the phage to adsorb to the modification or loss of an extracellular polymer in strains with inactivated epaR Phage-resistant epaR mutants exhibited increased daptomycin and osmotic stress susceptibilities. Our results demonstrate that in vitro spontaneous resistance to ?NPV1 comes at a cost in E. faecalis OG1RF.