Unknown

Dataset Information

0

Single-cell genomics and regulatory networks for 388 human brains.


ABSTRACT: Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet, little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multi-omics datasets into a resource comprising >2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550K cell-type-specific regulatory elements and >1.4M single-cell expression-quantitative-trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.

SUBMITTER: Emani PS 

PROVIDER: S-EPMC10983939 | biostudies-literature | 2024 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Single-cell genomics and regulatory networks for 388 human brains.

Emani Prashant S PS   Liu Jason J JJ   Clarke Declan D   Jensen Matthew M   Warrell Jonathan J   Gupta Chirag C   Meng Ran R   Lee Che Yu CY   Xu Siwei S   Dursun Cagatay C   Lou Shaoke S   Chen Yuhang Y   Chu Zhiyuan Z   Galeev Timur T   Hwang Ahyeon A   Li Yunyang Y   Ni Pengyu P   Zhou Xiao X   Bakken Trygve E TE   Bendl Jaroslav J   Bicks Lucy L   Chatterjee Tanima T   Cheng Lijun L   Cheng Yuyan Y   Dai Yi Y   Duan Ziheng Z   Flaherty Mary M   Fullard John F JF   Gancz Michael M   Garrido-Martín Diego D   Gaynor-Gillett Sophia S   Grundman Jennifer J   Hawken Natalie N   Henry Ella E   Hoffman Gabriel E GE   Huang Ao A   Jiang Yunzhe Y   Jin Ting T   Jorstad Nikolas L NL   Kawaguchi Riki R   Khullar Saniya S   Liu Jianyin J   Liu Junhao J   Liu Shuang S   Ma Shaojie S   Margolis Michael M   Mazariegos Samantha S   Moore Jill J   Moran Jennifer R JR   Nguyen Eric E   Phalke Nishigandha N   Pjanic Milos M   Pratt Henry H   Quintero Diana D   Rajagopalan Ananya S AS   Riesenmy Tiernon R TR   Shedd Nicole N   Shi Manman M   Spector Megan M   Terwilliger Rosemarie R   Travaglini Kyle J KJ   Wamsley Brie B   Wang Gaoyuan G   Xia Yan Y   Xiao Shaohua S   Yang Andrew C AC   Zheng Suchen S   Gandal Michael J MJ   Lee Donghoon D   Lein Ed S ES   Roussos Panos P   Sestan Nenad N   Weng Zhiping Z   White Kevin P KP   Won Hyejung H   Girgenti Matthew J MJ   Zhang Jing J   Wang Daifeng D   Geschwind Daniel D   Gerstein Mark M  

bioRxiv : the preprint server for biology 20240330


Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet, little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multi-omics datasets into a resource comprising >2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550K cel  ...[more]

Similar Datasets

| S-EPMC11365579 | biostudies-literature
2024-05-10 | GSE261983 | GEO
| PRJNA1089984 | ENA
| S-EPMC10627823 | biostudies-literature
| S-EPMC6727477 | biostudies-literature
| S-EPMC10179417 | biostudies-literature
| S-EPMC8766805 | biostudies-literature
| S-EPMC10123116 | biostudies-literature
| S-EPMC6063279 | biostudies-literature
| S-EPMC7739468 | biostudies-literature