Project description:Restrictive dermopathy (RD) is a rare and extremely severe congenital genodermatosis, characterized by a tight rigid skin with erosions at flexure sites, multiple joint contractures, low bone density and pulmonary insufficiency generally leading to death in the perinatal period. RD is caused in most patients by compound heterozygous or homozygous ZMPSTE24 null mutations. This gene encodes a metalloprotease specifically involved in lamin A post-translational processing. Here, we report a total of 16 families for whom diagnosis and molecular defects were clearly established. Among them, we report seven new ZMPSTE24 mutations, identified in classical RD or Mandibulo-acral dysplasia (MAD) affected patients. We also report nine families with one or two affected children carrying the common, homozygous thymine insertion in exon 9 and demonstrate the lack of a founder effect. In addition, we describe several new ZMPSTE24 variants identified in unaffected controls or in patients affected with non-classical progeroid syndromes. In addition, this mutation update includes a comprehensive search of the literature on previously described ZMPSTE24 mutations and associated phenotypes. Our comprehensive analysis of the molecular pathology supported the general rule: complete loss-of-function of ZMPSTE24 leads to RD, whereas other less severe phenotypes are associated with at least one haploinsufficient allele.
Project description:Restrictive dermopathy (RD) results in stillbirth or early neonatal death. RD is characterized by prematurity, intrauterine growth retardation, fixed facial expression, micrognathia, mouth in the 'o' position, rigid and tense skin with erosions and denudations and multiple joint contractures. Nearly all 25 previously reported neonates with RD had homozygous or compound heterozygous null mutations in the ZMPSTE24 gene. Here, we report three new cases of RD; all died within 3 weeks of birth. One of them had a previously reported homozygous c.1085dupT (p.Leu362PhefsX19) mutation, the second case had a novel homozygous c.1020G>A (p.Trp340X) null mutation in ZMPSTE24, but the third case, a stillborn with features of RD except for the presence of tapering rather than rounded, bulbous digits, harbored no disease-causing mutations in LMNA or ZMPSTE24. In the newborn with a novel ZMPSTE24 mutation, unique features included butterfly-shaped thoracic 5 vertebra and the bulbous appearance of the distal clavicles. Skin biopsies from both the stillborn fetus and the newborn with c.1020G>A ZMPSTE24 mutation showed absence of elastic fibers throughout the dermis. This report provides evidence of genetic heterogeneity among RD and concludes that there may be an additional locus for RD which remains to be identified.
Project description:Restrictive dermopathy (RD) is a lethal human genetic disorder characterized by very tight, thin, easily eroded skin, rocker bottom feet, and joint contractures. This disease was recently reported to be associated with a single heterozygous mutation in ZMPSTE24 and hypothesized to be a digenic disorder (Navarro et al, Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum Mol Genet 13:2493-2503, 2004). ZMPSTE24 encodes an enzyme necessary for the correct processing and maturation of lamin A, an intermediate filament component of the nuclear envelope. Here we present four unrelated patients with homozygous mutations in ZMPSTE24 and a fifth patient with compound heterozygous mutations in ZMPSTE24. Two of the three different mutations we found are novel, and all are single base insertions that result in messenger RNA frameshifts. As a consequence of the presumed lack of ZMPSTE24 activity, prelamin A, the unprocessed toxic form of lamin A, was detected in the nuclei of both cultured cells and tissue from RD patients, but not in control nuclei. Abnormally aggregated lamin A/C was also observed. These results indicate that RD is an autosomal recessive laminopathy caused by inactivating ZMPSTE24 mutations that result in defective processing and nuclear accumulation of prelamin A.
Project description:The corpus callosum is the largest white matter structure connecting the two cerebral hemispheres. Agenesis of the corpus callosum (ACC), complete or partial, is one of the most common cerebral malformations in humans with a reported incidence ranging between 1.8 per 10,000 livebirths to 230-600 per 10,000 in children and its presence is associated with neurodevelopmental disability. ACC may occur as an isolated anomaly or as a component of a complex disorder, caused by genetic changes, teratogenic exposures or vascular factors. Genetic causes are complex and include complete or partial chromosomal anomalies, autosomal dominant, autosomal recessive or X-linked monogenic disorders, which can be either de novo or inherited. The extreme genetic heterogeneity, illustrated by the large number of syndromes associated with ACC, highlight the underlying complexity of corpus callosum development. ACC is associated with a wide spectrum of clinical manifestations ranging from asymptomatic to neonatal death. The most common features are epilepsy, motor impairment and intellectual disability. The understanding of the genetic heterogeneity of ACC may be essential for the diagnosis, developing early intervention strategies, and informed family planning. This review summarizes our current understanding of the genetic heterogeneity in ACC and discusses latest discoveries.
Project description:Corpus callosum agenesis is a relatively common brain malformation. It can be isolated or included in a complex alteration of brain (or sometimes even whole body) morphology. It has been associated with a number of neuropsychiatric disorders, from subtle neuropsychological deficits to Pervasive Developmental Disorders.Etiology and pathogenetic mechanisms have been better understood in recent years, due to the availability of more adequate animal models and the relevant progresses in developmental neurosciences. These recent findings are reviewed (through a MedLine search including papers published in the last 5 years and most relevant previously published papers) in view of the potential impact on children's global functioning and on the possible rehabilitative treatment, with an emphasis on the possibility to exploit brain plasticity and on the use of the ICF-CY framework.
Project description:Corpus callosum agenesis is a rare condition and is sometimes associated with schizophrenia. The co-existence of these two conditions adds value to the neurodevelopmental theory of schizophrenia.
Project description:Corpus callosum agenesis is a relatively common brain malformation. It can be isolated or included in a complex alteration of brain (or sometimes even whole body) morphology. Etiology and pathogenetic mechanisms have been better understood in recent years due to the availability of more adequate animal models and the relevant progresses in developmental neurosciences. We present the case of a girl with a complete agenesis of the corpus callosum discovered at birth. She had mild learning difficulties, but reached satisfactory levels of autonomy after an individually tailored rehabilitative treatment. Her story is discussed in light of recent findings, which emphasize the possibility to exploit brain plasticity and the utility of an individually tailored approach, defined on the basis of a dialogue with the family and the patient.
Project description:Establishment of the corpus callosum involves coordination between callosal projection neurons and multiple midline structures, including the glial wedge (GW) rostrally and hippocampal commissure caudally. GW defects have been associated with agenesis of the corpus callosum (ACC). Here we show that conditional Lhx2 inactivation in cortical radial glia using Emx1-Cre or Nestin-Cre drivers results in ACC. The ACC phenotype was characterized by aberrant ventrally projecting callosal axons rather than Probst bundles, and was 100% penetrant on 2 different mouse strain backgrounds. Lhx2 inactivation in postmitotic cortical neurons using Nex-Cre mice did not result in ACC, suggesting that the mutant phenotype was not autonomous to the callosal projection neurons. Instead, ACC was associated with an absent hippocampal commissure and a markedly reduced to absent GW. Expression studies demonstrated strong Lhx2 expression in the normal GW and in its radial glial progenitors, with absence of Lhx2 resulting in normal Emx1 and Sox2 expression, but premature exit from the cell cycle based on EdU-Ki67 double labeling. These studies define essential roles for Lhx2 in GW, hippocampal commissure, and corpus callosum formation, and suggest that defects in radial GW progenitors can give rise to ACC.
Project description:Rubinstein-Taybi syndrome (RSTS) is a rare genetic disorder with characteristic morphological anomaly. Our patient was a 4.5-year-old girl came with features like broad thumbs, downward slanting palpebral fissures and mental retardation. Systemic abnormalities such as repeated infection, seizure with developmental delay were also associated with it. She was having head banging behavior abnormal slurring speech, incoordination while transferring things from one hand to other. Galaxy of clinical pictures and magnetic resonance imaging report helped to clinch the diagnosis as a case of "RSTS with corpus callosal agenesis" which to the best of our knowledge has never been reported in past from India.