Project description:The application of enzymes as biocatalysts in industrial processes has great potential due to their outstanding stereo-, regio- and chemoselectivity. Using autodisplay, enzymes can be immobilized on the cell surface of Gram-negative bacteria such as Escherichia coli. In the present study, the surface display of an alcohol dehydrogenase (ADH) and a cyclohexanone monooxygenase (CHMO) on E. coli was investigated. Displaying these enzymes on the surface of E. coli resulted in whole-cell biocatalysts accessible for substrates without further purification. An apparent maximal reaction velocity VMAX(app) for the oxidation of cyclohexanol with the ADH whole-cell biocatalysts was determined as 59.9 mU ml-1 . For the oxidation of cyclohexanone with the CHMO whole-cell biocatalysts a VMAX(app) of 491 mU ml-1 was obtained. A direct conversion of cyclohexanol to ε-caprolactone, which is a known building block for the valuable biodegradable polymer polycaprolactone, was possible by combining the two whole-cell biocatalysts. Gas chromatography was applied to quantify the yield of ε-caprolactone. 1.12 mM ε-caprolactone was produced using ADH and CHMO displaying whole-cell biocatalysts in a ratio of 1:5 after 4 h in a cell suspension of OD578nm 10. Furthermore, the reaction cascade as applied provided a self-sufficient regeneration of NADPH for CHMO by the ADH whole-cell biocatalyst.
Project description:This work explores for the first time the enzymatic synthesis of poly(butylene-co-ε-caprolactone) (PBSCL) copolyesters in bulk using commercially available monomers (dimethyl succinate (DMS), 1,4-butanediol (BD), and ε-caprolactone (CL)). A preliminary kinetic study was carried out which demonstrated the higher reactivity of DMS over CL in the condensation/ring opening polymerization reaction, catalyzed by Candida antarctica lipase B. PBSCL copolyesters were obtained with high molecular weights and a random microstructure, as determined by 13C NMR. They were thermally stable up to 300 °C, with thermal stability increasing with the content of CL in the copolyester. All of them were semicrystalline, with melting temperatures and enthalpies decreasing up to the eutectic point observed at intermediate compositions, and glass transition temperatures decreasing with the content of CL in the copolyester. The use of CALB provided copolyesters free from toxic metallic catalyst, which is very useful if the polymer is intended to be used for biomedical applications.
Project description:BackgroundTissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM). Poly(lactide-co-ε-caprolactone) (PLCL) has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the surface of PLCL scaffold is hydrophobic. Silk fibroin (SF) is a kind of natural polymer with inherent bioactivity, and supports mesenchymal stem cell attachment, osteogenesis, and ECM deposition. Therefore, we fabricated hybrid nanofibrous scaffolds by adding different weight ratios of SF to PLCL in order to find a scaffold with improved properties for bone regeneration.MethodsHybrid nanofibrous scaffolds were fabricated by blending different weight ratios of SF with PLCL. Human adipose-derived stem cells (hADSCs) were seeded on SF/PLCL nanofibrous scaffolds of various ratios for a systematic evaluation of cell adhesion, proliferation, cytotoxicity, and osteogenic differentiation; the efficacy of the composite of hADSCs and scaffolds in repairing critical-sized calvarial defects in rats was investigated.ResultsThe SF/PLCL (50/50) scaffold exhibited favorable tensile strength, surface roughness, and hydrophilicity, which facilitated cell adhesion and proliferation. Moreover, the SF/PLCL (50/50) scaffold promoted the osteogenic differentiation of hADSCs by elevating the expression levels of osteogenic marker genes such as BSP, Ocn, Col1A1, and OPN and enhanced ECM mineralization. In vivo assays showed that SF/PLCL (50/50) scaffold improved the repair of the critical-sized calvarial defect in rats, resulting in increased bone volume, higher trabecular number, enhanced bone mineral density, and increased new bone areas, compared with the pure PLCL scaffold.ConclusionThe SF/PLCL (50/50) nanofibrous scaffold facilitated hADSC proliferation and osteogenic differentiation in vitro and further promoted new bone formation in vivo, suggesting that the SF/PLCL (50/50) nanofibrous scaffold holds great potential in bone tissue regeneration.
Project description:The crystallization behavior of poly(ε-caprolactone) (PCL) in a poly(vinylidene fluoride) (PVDF)/PCL blend as well as on a highly orientated PVDF substrate was studied by means of POM, DSC and TEM. The results show that the miscibility of the PVDF/PCL blend and the spherulitic morphology of PVDF varies with the blend ratio. For all the compositions, the pre-existing PVDF crystals accelerated the crystallization of PCL because the PVDF exhibits very strong nucleation ability toward PCL as reflected by the occurrence of heteroepitaxy and the transcrystallization of PBA on the PVDF substrate. This is associated with the perfect lattice matching between the PBA and PVDF crystals.
Project description:The current treatments to restore skeletal muscle defects present several injuries. The creation of scaffolds and implant that allow the regeneration of this tissue is a solution that is reaching the researchers' interest. To achieve this, electrospinning is a useful technique to manufacture scaffolds with nanofibers with different orientation. In this work, polycaprolactone and gelatin solutions were tested to fabricate electrospun scaffolds with two degrees of alignment between their fibers: random and aligned. These scaffolds can be seeded with myoblast C2C12 and then stimulated with a mechanical bioreactor that mimics the physiological conditions of the tissue. Cell viability as well as cytoskeletal morphology and functionality was measured. Myotubes in aligned scaffolds (9.84 ± 1.15 μm) were thinner than in random scaffolds (11.55 ± 3.39 μm; P = 0.001). Mechanical stimulation increased the width of myotubes (12.92 ± 3.29 μm; P < 0.001), nuclear fusion (95.73 ± 1.05%; P = 0.004), and actin density (80.13 ± 13.52%; P = 0.017) in aligned scaffolds regarding the control. Moreover, both scaffolds showed high myotube contractility, which was increased in mechanically stimulated aligned scaffolds. These scaffolds were also electrostimulated at different frequencies and they showed promising results. In general, mechanically stimulated aligned scaffolds allow the regeneration of skeletal muscle, increasing viability, fiber thickness, alignment, nuclear fusion, nuclear differentiation, and functionality.
Project description:Direct oxidation of KA oil (the mixture of cyclohexanone and cyclohexanol) toward ε-caprolactone is in high demand yet hard to implement in need of juggling the activation of both methyne C-H bond of cyclohexanol and α-C-C bond of cyclohexanone. Here we demonstrate that in situ formed Cu1+δ-Oδ-• active site, which originates from relay reaction at Ni(II) and Cu(I) pairs in a metal-organic framework (known as NiCu-MOF-74) with O2 and benzaldehyde (PhCHO), efficiently oxidizes KA oil toward ɛ-caprolactone along with good stability. Mechanism investigation discloses that the auxiliary Ni(II) site first adsorbs O2 for abstracting formyl hydrogen in PhCHO followed by transfer of PhCO· to react with another O2 over the major Cu(I) site, leading to formation of Cu1+δ-Oδ-• and PhCOOH. This major-auxiliary cooperative strategy will be particularly suitable for multivariate MOFs as next generation catalysts towards complex reactions.
Project description:Functionalized scaffolds based on biodegradable polymers are materials used in bone tissue engineering. This study presents the development of functionalized fibrous scaffolds, fabricated from poly(ε-caprolactone) (PCL) and hydroxyapatite (HA). To produce this material, a short-distance electrospinning (ES) system was developed by adapting a 3D printer. The morphology and chemical properties of the scaffolds were evaluated using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The results confirmed the porous structure and the presence of hydroxyapatite throughout the entire scaffold area. Mechanical tests indicated good elasticity and tensile strength of the scaffolds, favorable for bone regeneration. In vitro tests showed high levels of cell viability. Furthermore, in vivo experiments using a calvarial defect model in rats demonstrated that the PCL/HA scaffold promoted enhanced bone regeneration. Therefore, the PCL/HA scaffold developed through the adapted electrospinning system shows promise for bone repair.
Project description:ε-caprolactone-p-coumaric acid copolymers at different mole ratios (ε-caprolactone:p-coumaric acid 1:0, 10:1, 8:1, 6:1, 4:1, and 2:1) were synthesized by melt-polycondensation and using 4-dodecylbenzene sulfonic acid as catalyst. Chemical analysis by NMR and GPC showed that copolyesters were formed with decreasing molecular weight as p-coumaric acid content was increased. Physical characteristics, such as thermal and mechanical properties, as well as water uptake and water permeability, depended on the mole fraction of p-coumaric acid. The p-coumarate repetitive units increased the antioxidant capacity of the copolymers, showing antibacterial activity against the common pathogen Escherichia coli. In addition, all the synthesized copolyesters, except the one with the highest concentration of the phenolic acid, were cytocompatible and hemocompatible, thus becoming potentially useful for skin regeneration applications.
Project description:The broad application of electrospun nanofibrous scaffolds in tissue engineering is limited by their small pore size, which has a negative influence on cell migration. This disadvantage could be significantly improved through the combination of nano- and microfibrous structure. To accomplish this, different nano/microfibrous scaffolds were produced by hybrid electrospinning, combining solution electrospinning with melt electrospinning, while varying the content of the nanofiber. The morphology of the silk fibroin (SF)/poly(ε-caprolactone) (PCL) nano/microfibrous composite scaffolds was investigated with field-emission scanning electron microscopy, while the mechanical and pore properties were assessed by measurement of tensile strength and mercury porosimetry. To assay cell proliferation, cell viability, and infiltration ability, human mesenchymal stem cells were seeded on the SF/PCL nano/microfibrous composite scaffolds. From in vivo tests, it was found that the bone-regenerating ability of SF/PCL nano/microfibrous composite scaffolds was closely associated with the nanofiber content in the composite scaffolds. In conclusion, this approach of controlling the nanofiber content in SF/PCL nano/microfibrous composite scaffolds could be useful in the design of novel scaffolds for tissue engineering.
Project description:Herein we report the synthesis, isolation and polymerisation activity of two new zinc compounds based on a 2,6-diisopropylphenyl (Dipp) β-diiminate (NacNac) ligand framework with zinc also ligated by an amidate (2-pyridonate or 6-methyl-2-pyridonate) unit. The compounds crystallised as either monomeric (6-Me-2-pyridonate derivative) or dimeric (2-pyridonate) species, although both were found to be monomeric in solution via1H DOSY NMR spectroscopy, which was supported by DFT calculations. These observations suggest that both complexes initiate ring-opening polymerisation (ROP) through a single-site monometallic mechanism. High molecular weight poly ε-caprolactone (PCL) was achieved via exogenous initiator-free ROP conditions with both catalysts. An increase in the 2-pyridonate initiator steric bulk (6-Me- vs. 6-H-) resulted in an improved catalytic activity, facilitating complete monomer conversion within 1 h at 60 °C. Pyridonate end-groups were observed by MALDI-ToF mass spectrometry, contrasting with previous observations for DippNacNac-Zn acetate complexes (where no acetate end groups are observed), instead this more closely resembles the reactivity of DippNacNac-Zn alkoxide complexes in ROP (where RO end groups are observed). Additional major signals in the MALDI-ToF spectra were consistent with cyclic PCL species, which are attributed to back-biting ring-closing termination steps occuring in a process facilitated by the pyridonate unit being an effective leaving group. To the best of our knowledge, these complexes represent the first examples of pyridonate, and indeed amidate, initated ROP.