Project description:The (011) termination of rutile TiO2 is reported to be particularly effective for photocatalysis. Here, the structure of the interface formed between this substrate and water is revealed using surface X-ray diffraction. While the TiO2(011) surface exhibits a (2 × 1) reconstruction in ultra-high vacuum (UHV), this is lifted in the presence of a multilayer of water at room temperature. This change is driven by the formation of Ti-OH at the interface, which has a bond distance of 1.93 ± 0.02 Å. The experimental solution is in good agreement with density functional theory and first-principles molecular dynamics calculations. These results point to the important differences that can arise between the structure of oxide surfaces in UHV and technical environments and will ultimately lead to an atomistic understanding of the photocatalytic process of water splitting on TiO2 surfaces.
Project description:We report about an in situ study of crystalline structural changes during thermal treatment of a Ba0.5Sr0.5TiO3 (BSTO) film grown on MgO. The study covers the complete cycle of heating, annealing and cooling and reveals simultaneous phenomena of phase transitions and strain evolution, which have been characterized by in situ 2D reciprocal space mapping (2D-RSM) using high-resolution synchrotron x-ray diffraction in coplanar and grazing incidence geometries. In this way, temperature induced phase transformation from the BSTO2 to the BSTO1 phase has been monitored and the appearance of a further crystalline phase was detected. Moreover, for both BSTO phases, transitions between in-plane compressive and tensile states have been determined during thermal treatment. Furthermore, a contraction of the out-of-plane lattice components has been observed during the annealing phase while the in-plane lattice components remain leading to the change of the residual in-plane strain towards tensile state. The in situ 2D-RSM findings provide valuable and versatile insights into strain engineering and structure modification upon thermal treatment.
Project description:In situ X-ray diffraction indicates that the structural phase transition from h-MoO3 to α-MoO3 is a first-order transition with a phase transition temperature range of 378.5-443.1 °C. The linear coefficients of thermal expansion of h-MoO3 are strongly anisotropic, that is, αa=b = 72.87 × 10-6 K-1 and αc = -19.44 × 10-6 K-1. In the h-MoO3 phase, water molecules are located at the (0 0 0.25) site inside the MoO6 octahedra tunnel that is formed by six MoO6 corner-sharing octahedron zigzag chains. With increasing temperature, the release of water molecules from the octahedra tunnel causes the octahedra chains to shrink and the octahedra tunnel to expand. When the phase transition occurs, the anomalous expansion of the MoO6 octahedra tunnel ruptures the Mo-O2 bonds, forming individual MoO6 octahedron zigzag chains that then share corners to generate octahedron layers in the ⟨100⟩α direction. The octahedron layers are bonded by van der Waals interactions in the ⟨010⟩α direction, crystalizing into the α-MoO3 structure.
Project description:Intercalation of lithium and ammonia into the layered semiconductor Bi2Se3 proceeds via a hyperextended (by >60%) ammonia-rich intercalate, to eventually produce a layered compound with lithium amide intercalated between the bismuth selenide layers which offers scope for further chemical manipulation.
Project description:In situ techniques are essential to understanding the behavior of electrocatalysts under operating conditions. When employed, in situ synchrotron grazing-incidence X-ray diffraction (GI-XRD) can provide time-resolved structural information of materials formed at the electrode surface. In situ cells, however, often require epoxy resins to secure electrodes, do not enable electrolyte flow, or exhibit limited chemical compatibility, hindering the study of non-aqueous electrochemical systems. Here, a versatile electrochemical cell for air-free in situ synchrotron GI-XRD during non-aqueous Li-mediated electrochemical N2 reduction (Li-N2R) has been designed. This cell not only fulfills the stringent material requirements necessary to study this system but is also readily extendable to other electrochemical systems. Under conditions relevant to non-aqueous Li-N2R, the formation of Li metal, LiOH and Li2O as well as a peak consistent with the α-phase of Li3N was observed, thus demonstrating the functionality of this cell toward developing a mechanistic understanding of complicated electrochemical systems.
Project description:The short-range structure of 20BaO-80TeO2 glass was studied in situ by high pressure neutron diffraction and high pressure Raman spectroscopy. Neutron diffraction measurements were performed at the PEARL instrument of the ISIS spallation neutron source up to a maximum pressure of 9.0 ± 0.5 GPa. The diffraction data was analysed via reverse Monte Carlo simulations and the changes in the glass short-range structural properties, Ba-O, Te-O and O-O bond lengths and speciation were studied as a function of pressure. Te-O co-ordination increases from 3.51 ± 0.05 to 3.73 ± 0.05, Ba-O coordination from 6.24 ± 0.19 to 6.99 ± 0.34 and O-O coordination from 6.00 ± 0.05 to 6.69 ± 0.06 with an increase in pressure from ambient to 9.0 GPa. In situ high pressure Raman studies found that the ratio of intensities of the two bands at 668 cm-1 and 724 cm-1 increases from 0.99 to 1.18 on applying pressure up to 19.28 ± 0.01 GPa, and that these changes are due to the conversion of TeO3 into TeO4 structural units in the tellurite network. It is found that pressure causes densification of the tellurite network by the enhancement of co-ordination of cations, and an increase in distribution of Te-O and Ba-O bond lengths. The original glass structure is restored upon the release of pressure.
Project description:Based on multielectron conversion reactions, layered transition metal dichalcogenides are considered promising electrode materials for sodium-ion batteries, but suffer from poor cycling performance and rate capability due to their low intrinsic conductivity and severe volume variations. Here, interlayer-expanded MoSe2/phosphorus-doped carbon hybrid nanospheres coated by anatase TiO2 (denoted as MoSe2/P-C@TiO2) are prepared by a facile hydrolysis reaction, in which TiO2 coating polypyrrole-phosphomolybdic acid is utilized as a novel precursor followed by a selenization process. Benefiting from synergistic effects of MoSe2, phosphorus-doped carbon, and TiO2, the hybrid nanospheres manifest unprecedented cycling stability and ultrafast pseudocapacitive sodium storage capability. The MoSe2/P-C@TiO2 delivers decent reversible capacities of 214 mAh g-1 at 5.0 A g-1 for 8000 cycles, 154 mAh g-1 at 10.0 A g-1 for 10000 cycles, and an exceptional rate capability up to 20.0 A g-1 with a capacity of ≈175 mAh g-1 in a voltage range of 0.5-3.0 V. Coupled with a Na3V2(PO4)3@C cathode, a full cell successfully confirms a reversible capacity of 242.2 mAh g-1 at 0.5 A g-1 for 100 cycles with a coulombic efficiency over 99%.
Project description:Titanium dioxide (TiO2) is often employed as a light absorber, electron-transporting material and catalyst in different energy and environmental applications. Heat treatment in a hydrogen atmosphere generates black TiO2 (b-TiO2), allowing better absorption of visible light, which placed this material in the forefront of research. At the same time, hydrogen treatment also introduces trap states, and the question of whether these states are beneficial or harmful is rather controversial and depends strongly on the application. We employed combined surface science and in situ electrochemical methods to scrutinize the effect of these states on the photoelectrochemical (PEC), electrocatalytic (EC), and charge storage properties of b-TiO2. Lower photocurrents were recorded with the increasing number of defect sites, but the EC and charge storage properties improved. We also found that the PEC properties can be enhanced by trap state passivation through Li+ ion intercalation in a two-step process. This passivation can only be achieved by utilizing small size cations in the electrolyte (Li+) but not with bulky ones (Bu4N+). The presented insights will help to resolve some of the controversies in the literature and also provide rational trap state engineering strategies.
Project description:TiO2-based powder materials have been widely studied as efficient photocatalysts for water splitting due to their low cost, photo-responsivity, earthly abundance, chemical and thermal stability, etc. In particular, the recent breakthrough of nitrogen-doped TiO2, which enhances the presence of structural defects and dopant impurities at elevated temperatures, exhibits an impressive visible-light absorption for photocatalytic activity. Although their electronic and optical properties have been extensively studied, the structure-activity relationship and photocatalytic mechanism remain ambiguous. Herein, we report an in-depth structural study of rutile, anatase and mixed phases (commercial P25) with and without nitrogen-doping by variable-temperature synchrotron X-ray powder diffraction. We report that an unusual anisotropic thermal expansion of the anatase phase can reveal the intimate relationship between sub-surface oxygen vacancies, nitrogen-doping level and photocatalytic activity. For highly doped anatase, a new cubic titanium oxynitride phase is also identified which provides important information on the fundamental shift in absorption wavelength, leading to excellent photocatalysis using visible light.
Project description:The crystallographic characterization of framework-guest interactions in metal-organic frameworks allows the location of guest binding sites and provides meaningful information on the nature of these interactions, enabling the correlation of structure with adsorption behavior. Here, techniques developed for in situ single-crystal X-ray diffraction experiments on porous crystals have enabled the direct observation of CO, CH4, N2, O2, Ar, and P4 adsorption in Co2(dobdc) (dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate), a metal-organic framework bearing coordinatively unsaturated cobalt(ii) sites. All these molecules exhibit such weak interactions with the high-spin cobalt(ii) sites in the framework that no analogous molecular structures exist, demonstrating the utility of metal-organic frameworks as crystalline matrices for the isolation and structural determination of unstable species. Notably, the Co-CH4 and Co-Ar interactions observed in Co2(dobdc) represent, to the best of our knowledge, the first single-crystal structure determination of a metal-CH4 interaction and the first crystallographically characterized metal-Ar interaction. Analysis of low-pressure gas adsorption isotherms confirms that these gases exhibit mainly physisorptive interactions with the cobalt(ii) sites in Co2(dobdc), with differential enthalpies of adsorption as weak as -17(1) kJ mol-1 (for Ar). Moreover, the structures of Co2(dobdc)·3.8N2, Co2(dobdc)·5.9O2, and Co2(dobdc)·2.0Ar reveal the location of secondary (N2, O2, and Ar) and tertiary (O2) binding sites in Co2(dobdc), while high-pressure CO2, CO, CH4, N2, and Ar adsorption isotherms show that these binding sites become more relevant at elevated pressures.