Project description:Electrochemical cells based on alkali metal anodes are receiving intensive scientific interest as potentially transformative technology platforms for electrical energy storage. Chemical, morphological, mechanical and hydrodynamic instabilities at the metal anode produce uneven metal electrodeposition and poor anode reversibility, which, are among the many known challenges that limit progress. Here, we report that solid-state electrolytes based on crosslinked polymer networks can address all of these challenges in cells based on lithium metal anodes. By means of transport and electrochemical analyses, we show that manipulating thermodynamic interactions between polymer segments covalently anchored in the network and "free" segments belonging to an oligomeric electrolyte hosted in the network pores, one can facilely create hybrid electrolytes that simultaneously exhibit liquid-like barriers to ion transport and solid-like resistance to morphological and hydrodynamic instability.
Project description:Nanocomposite polymer electrolytes (CPEs) are promising materials for all-solid-state lithium metal batteries (LMBs) due to their enhanced ionic conductivities and stability to the lithium anode. MXenes are a new two-dimensional, 2D, family of early transition metal carbides and nitrides, which have a high aspect ratio and a hydrophilic surface. Herein, using a green, facile aqueous solution blending method, we uniformly dispersed small amounts of Ti3C2T x into a poly(ethylene oxide)/LiTFSI complex (PEO20-LiTFSI) to fabricate MXene-based CPEs (MCPEs). The addition of the 2D flakes to PEO simultaneously retards PEO crystallization and enhances its segmental motion. Compared to the 0D and 1D nanofillers, MXenes show higher efficiency in ionic conductivity enhancement and improvement in the performance of LMBs. The CPE with 3.6 wt% MXene shows the highest ionic conductivity at room temperature (2.2 × 10-5 S m-1 at 28 °C). An LMB using MCPE with only 1.5 wt% MXene shows rate capability and stability comparable with that of the state-of-the-art CPELMBs. We attribute the excellent performance to the 2D geometry of the filler, the good dispersion of the flakes in the polymer matrix, and the functional group-rich surface.
Project description:Solid polymer electrolytes with large-scale processability and interfacial compatibility are promising candidates for solid-state lithium metal batteries. Among various systems, poly(vinylidene fluoride)-based polymer electrolytes with residual solvent are appealing for room-temperature battery operations. However, their porous structure and limited ionic conductivity hinder practical application. Herein, we propose a phase regulation strategy to disrupt the symmetry of poly(vinylidene fluoride) chains and obtain the dense composite electrolyte through the incorporation of MoSe2 sheets. The electrolyte with high dielectric constant can optimize the solvation structures to achieve high ionic conductivity and low activation energy. The in-situ reactions between MoSe2 and Li metal generate Li2Se fast conductor in solid electrolyte interphase, which improves the Coulombic efficiency and interfacial kinetics. The solid-state Li||Li cells achieve robust cycling at 1 mA cm-2, and the Li||LiNi0.8Co0.1Mn0.1O2 full cells show practical performance at high rate (3C), high loading (2.6 mAh cm-2) and in pouch cell.
Project description:Solid-state polymer electrolytes (SPEs) have great processing flexibility and electrode-electrolyte contact and have been employed as the promising electrolytes for lithium metal batteries. Among them, poly(ethylene oxide) (PEO)-based SPEs have attracted widespread attention because of easy synthesis, low mass density, good mechanical stability, low binding energy with lithium salts, and excellent mobility of charge carriers. In order to overcome the low room-temperature ionic conductivity and the poor thermodynamic stability in high-voltage devices (>4.2 V) of the PEO materials, composition modulations by incorporating PEO with inorganic and/or organic components have been designed, which could effectively enable the applications of PEO-based SPEs with widened electro-stable voltage ranges. In this mini review, we describe recent progresses of several kinds of PEO composite structures for SPEs, and we compare the synthesis strategies and properties of these SPEs in lithium batteries. Further developments and improvements of the PEO-based materials for building better rechargeable batteries are also discussed.
Project description:Li7La3Zr1.4Ta0.6O12 (LLZTO) and polyvinylidene fluoride (PVDF) composite electrolytes (LPCEs) with a high ceramic content up to 80 wt% have been developed. Hot pressing can significantly reduce the porosity of LPCEs and increase the conductivity to 1.08 × 10-4 S cm-1 at 60 °C, then the LPCEs can sustain Li plating/stripping cycling for over 1500 h, and make LiFePO4/LPCE/Li cell display a capacity retention of 86% in 200 cycles.
Project description:Composite polymer electrolytes (CPEs) with high ionic conductivity and favorable electrolyte/electrode interfacial compatibility are promising alternatives to liquid electrolytes. However, severe parasitic reactions in the Li/electrolyte interface and the air-unstable inorganic fillers have hindered their industrial applications. Herein, surface-edge opposite charged Laponite (LAP) multilayer particles with high air stability were grafted with imidazole ionic liquid (IL-TFSI) to enhance the thermal, mechanical, and electrochemical performances of polyethylene oxide (PEO)-based CPEs. The electrostatic repulsion between multilayers of LAP-IL-TFSI enables them to be easily penetrated by PEO segments, resulting in a pronounced amorphous region in the PEO matrix. Therefore, the CPE-0.2LAP-IL-TFSI exhibits a high ionic conductivity of 1.5 × 10-3 S cm-1 and a high lithium-ion transference number of 0.53. Moreover, LAP-IL-TFSI ameliorates the chemistry of the solid electrolyte interphase, significantly suppressing the growth of lithium dendrites and extending the cycling life of symmetric Li cells to over 1000 h. As a result, the LiFePO4||CPE-0.2LAP-IL-TFSI||Li cell delivers an outstanding capacity retention of 80% after 500 cycles at 2C at 60 °C. CPE-LAP-IL-TFSI also shows good compatibility with high-voltage LiNi0.8Co0.1Mn0.1O2 cathodes.
Project description:Hybrid solid polymer electrolytes (HSPE) comprising poly(ethylene oxide) (PEO), LiTFSI, barium titanate (BaTiO3), and viologen are prepared by a facile hot press. The physical properties of the HSPE membranes are studied by using small-angle and wide-angle X-ray scattering, thermogravimetric analysis, differential scanning calorimetry, and tensile strength. The prepared hybrid solid polymer electrolytes are also investigated by means of ionic conductivity and transport number measurements. The employed analyses collectively reveal that each additive in the PEO host contributes to a specific property: LiTFSI is essential in providing ionic species, while BaTiO3 and viologen enhance the thermal stability, ionic conductivity, and transport number. The enhanced value in the Li+-transport number of HSPE are presumably attributed to the electrostatic attraction of TFSI anions and the positive charges of viologen. Synergistically, the added BaTiO3 and viologen improve the electrochemical properties of HSPE for the applications in all-solid-state-lithium polymer batteries.
Project description:Polymers are promising candidates as solid-state electrolytes due to their performance and processability, but fillers play a critical role in adjusting the polymer network structure and electrochemical, thermal, and mechanical properties. Most fillers studied so far are anisotropic, limiting the possibility of homogeneous ion transport. Here, applying metal-organic framework (MOF) glass as an isotropic functional filler, solid-state polyethylene oxide (PEO) electrolytes are prepared. Calorimetric and diffusion kinetics tests show that the MOF glass addition reduces the glass transition temperature of the polymer phase, improving the mobility of the polymer chains, and thereby facilitating lithium (Li) ion transport. By also incorporating the lithium salt and ionic liquid (IL), Li-Li symmetric cell tests of the PEO-lithium salt-MOF glass-IL electrolyte reveal low overpotential, indicating low interfacial impedance. Simulations show that the isotropic structure of the MOF glass facilitates the wettability of the IL by enhancing interfacial interactions, leading to a less confined IL structure that promotes Li-ion mobility. Finally, the obtained electrolyte is used to construct Li-lithium iron phosphate full batteries that feature high cycle stability and rate capability. This work therefore demonstrates how an isotropic functional filler can be used to enhance the electrochemical performance of solid-state polymer electrolytes.
Project description:Coupling high-capacity cathode and Li-anode with solid-state electrolyte has been demonstrated as an effective strategy for increasing the energy densities and safety of rechargeable batteries. However, the limited ion conductivity, the large interfacial resistance, and unconstrained Li-dendrite growth hinder the application of solid-state Li-metal batteries. Here, a poly(ether-urethane)-based solid-state polymer electrolyte with self-healing capability is designed to reduce the interfacial resistance and provides a high-performance solid-state Li-metal battery. With its dynamic covalent disulfide bonds and hydrogen bonds, the proposed solid-state polymer electrolyte exhibits excellent interfacial self-healing ability and maintains good interfacial contact. Full cells are assembled with the two integrated electrodes/electrolytes. As a result, the Li||Li symmetric cells exhibit stable long-term cycling for more than 6000 h, and the solid-state Li-S battery shows a prolonged cycling life of 700 cycles at 0.3 C. The use of ultrasound imaging technology shows that the interfacial contact of the integrated structure is much better than those of traditional laminated structure. This work provides an interesting interfacial dual-integrated strategy for designing high-performance solid-state Li-metal batteries.