Project description:A complete set of binary basic logic gates (OR, AND, NOR, NAND, INHIBT, IMPLICATION, XOR and XNOR) is realized on a label-free and enzyme-free sensing platform using caged G-quadruplex as the signal transducer. In the presence of an appropriate input, the temporarily blocked G-rich sequence in the hairpin DNA is released through cleavage by the synergetically-stabilized Mg2+-dependent DNAzyme which can be made to function via the input-guided cooperative conjunction of the DNAzyme subunits. In the presence of hemin, the unblocked G-quadruplex DNAzyme catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to generate a colored readout signal which can be readily distinguished by the naked eye. This strategy is quite versatile and straightforward for logic operations. Two combinatorial gates (XOR + AND and XOR + NOR) are also successfully fabricated to demonstrate the modularity and scalability of the computing elements. The distinctive advantage of this logic system is that molecular events in aqueous solution could be translated into a color change which can be directly observed by the naked eye without resorting to any analytical instrumentation. Moreover, this work reveals a new route for the design of molecular logic gates that can be executed without any labeling and immobilization procedure or separation and washing step, which holds great promise for intelligent point-of-care diagnostics and in-field applications.
Project description:We describe a new method for the detection of miRNA in biological samples. This technology is based on the isothermal nicking enzyme amplification reaction and subsequent hybridization of the amplification product with gold nanoparticles and magnetic microparticles (barcode system) to achieve naked-eye colorimetric detection. This platform was used to detect a specific miRNA (miRNA-10b) associated with breast cancer, and attomolar sensitivity was demonstrated. The assay was validated in cell culture lysates from breast cancer cells and in serum from a mouse model of breast cancer.
Project description:MicroRNAs (miRNAs) have been considered to be potent biomarkers for early disease diagnosis and for cancer therapy. The rapid and selective detection of miRNAs without reverse transcription and labelling is highly desired. Herein, we report a simple and label-free miRNA detection method that is based on the Duplex-Specific Nuclease (DSN)-Assisted simple target miRNA recycling procedure. The interaction of the G-quadruplex DNA structure with N-methyl mesoporphyrin IX (NMM) led to a label-free signal output. Under the optimised conditions, this method allowed for simple, rapid, and sequence-specific detection of miR-141 over a dynamic range from 1 fM to 100 nM with a linear range from 1 pM to 100 nM. Moreover, our method offered an excellent capacity to discriminate between miRNA family members with just one mismatched nucleotide. This simple and label-free strategy holds great potential in applications in biomedical research and in early clinical diagnostics.
Project description:A simple, sensitive and selective colorimetric biosensor for the detection of Staphylococcal enterotoxin B (SEB) was developed using SEB-binding aptamer (SEB2) as recognition element and unmodified gold nanoparticles (AuNPs) as colorimetric probes. The assay is based on color change from red to purple due to conformational change of aptamer in the presence of SEB, and the phenomenon of salt-induced AuNPs aggregation which could be monitored by naked eye or UV-vis spectrometer. Results showed that the AuNPs can effectively differentiate the SEB induced conformational change of the aptamer in the presence of a given high salt concentration. A linear response in the range of 50 μg/mL to 0.5 ng/mL of SEB concentration was obtained. The assay was highly specific to SEB as compared to other related toxins. The limit of detection (LOD) of SEB achieved within few minutes was 50 ng/mL visually and spectrometric method improved it to 0.5 ng/mL. Robustness of the assay was tested in artificially spiked milk samples and cross-checked using in house developed sandwich ELISA (IgY as capturing and SEB specific monoclonal as revealing antibody) and PCR. This colorimetric assay could be a suitable alternative over existing methods during biological emergencies due to its simplicity, sensitive and cost effectiveness.
Project description:We discovered that several types of steroid hormones quench the fluorescence of quantum dots (QDs) at close proximity. Inspired by the finding, we developed a new type of biosensor for the sensitive detection of cortisol via direct fluorescence quenching of functionalized QD probes directly induced by the capture of target cortisol without additional reporter reagents. The detection selectivity was provided by cortisol-selective aptamers or anticortisol antibodies conjugated on the QD surfaces. With the magnetic nanoparticle labeling, the new sensing method enabled rapid cortisol sensing at physiologically relevant concentrations and yielded the detection limit of ∼1 nM for aptamer-based sensors and ∼100 pM for antibody-based sensors. We also evaluated the new detection method using saliva samples with an optimized sample preparation process under the assistance of magnetic manipulation. The result showed a satisfying recovery rate for spiked saliva tests. The facile sensing technology offers an appealing approach for the detection of steroid hormones in point-of-care settings.
Project description:DNA origami technology allows for the precise nanoscale assembly of chemical entities that give rise to sophisticated functional materials. We have created a versatile DNA origami nanofork antenna (DONA) by assembling Au or Ag nanoparticle dimers with different gap sizes down to 1.17 nm, enabling signal enhancements in surface-enhanced Raman scattering (SERS) of up to 1011. This allows for single-molecule SERS measurements, which can even be performed with larger gap sizes to accommodate differently sized molecules, at various excitation wavelengths. A general scheme is presented to place single analyte molecules into the SERS hot spots using the DNA origami structure exploiting covalent and noncovalent coupling schemes. By using Au and Ag dimers, single-molecule SERS measurements of three dyes and cytochrome c and horseradish peroxidase proteins are demonstrated even under nonresonant excitation conditions, thus providing long photostability during time-series measurement and enabling optical monitoring of single molecules.
Project description:Flavokavain B (FKB), a hepatotoxic chalcone from Piper methysticum (kava), has raised safety concerns due to its role in disrupting redox homeostasis and inducing apoptosis in hepatocytes. Conventional chromatographic methods for FKB detection, while sensitive, are costly and impractical for field applications. In this work, DNA aptamers were selected using the library-immobilized method and high-throughput sequencing. Three families of aptamers were obtained, and the best one named FKB-S showed a dissociation constant (KD) of 280 nM using microscale thermophoresis. To demonstrate its practical utility, a rapid and label-free colorimetric aptasensor was developed based on aptamer-induced gold nanoparticle aggregation. This assay achieved a detection limit of 150 nM (43.46 ng/mL) and provided results within 10 min. Compared to traditional chromatographic methods, the aptasensor offers a simple, cost-effective, and equipment-free approach for on-site FKB detection, making it a promising tool for the quality control and safety monitoring of kava-based products in diverse environments.
Project description:Rapid and sensitive pathogenic bacterial identification and isolation from complicated clinical specimens are of great importance for the early diagnosis and prevention of osteomyelitis. Herein, we proposed a novel methicillin-resistant Staphylococcus aureus (MRSA) detection strategy through two specially designed streptavidin magnetic bead-based probes, including a capture probe and a report probe. In detail, the capture probe takes the responsibility to specially bind with the surface protein of MRSA and leads to the liberation of the promoter which could subsequently initiate report probe-based signal amplification. Afterward, the hybridization of the promoter probe with the report probe could then transform the protruding 3' terminus of template DNA in the report probe into a blunt end. With the assistance of Exo III, the template could be digested to liberate the promoter to form a recycle and to liberate the biprobe to induce the following rolling circle amplification (RCA)-based signal amplification. Through the integration of the Exo III-assisted recycle and RCA-based signal amplification, the proposed method exhibited a favorable detection performance.
Project description:Pb(II) can cause serious damaging effects to human health, and thus, the study of Pb2+ detection methods to sensitively and selectively monitor Pb(II) pollution has significant importance. In this work, we have developed a label-free fluorescence sensing strategy based on a Pb(II) DNAzyme cleavage and the ThT/G-quadruplex complex. In the presence of Pb(II), a G-rich tail was cut and released from the substrate strand, which then would form a G-quadruplex structure by combination with ThT dye. The fluorescence signal increase was then measured for sensitive Pb(II) quantification with a limit of detection of 0.06 nM. Our sensor also demonstrated high selectivity against six different metal ions, which is very important for the analysis of complex samples.
Project description:Herein, the preparation of gold nanoparticles-silk fibroin (SF-AuNPs) dispersion and its label-free colorimetric detection of the organophosphate pesticide, namely chlorpyrifos, at ppb level are reported. The silk fibroin solution was extracted from B. mori silk after performing degumming, dissolving and dialysis steps. This fibroin solution was used for synthesis of gold nanoparticles in-situ without using any external reducing and capping agent. X-ray Diffractometry (XRD), Field Emission Transmission Electron Microscopy (FETEM) along with Surface Plasmon Resonance based optical evaluation confirmed generation of gold nanoparticles within SF matrix. The resultant SF-AuNPs dispersion exhibited rapid and excellent colorimetric pesticide sensing response even at 10 ppb concentration. Effect of additional parameters viz. pH, ionic concentration and interference from other pesticide samples was also studied. Notably, SF-AuNPs dispersion exhibited selective colorimetric pesticide sensing response which can be calibrated. Furthermore, this method was extended to various simulated real life samples such as tap water, soil and agricultural products including plant residues to successfully detect the presence of chlorpyrifos pesticide. The proposed colorimetric sensor system is facile yet effective and can be employed by novice rural population and expert researchers alike. It can be exploited as preliminary tool for label-free colorimetric chlorpyrifos pesticide sensing in water and agricultural products.